Description Usage Arguments Value Examples
GeneScatterPlot enables visualizing gene expression of a gene over nonlinear dimensionality reduction with t-SNE or UMAP.
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | GeneScatterPlot.SingleCellExperiment(
  object,
  genes,
  return.plot,
  dim.reduction.type,
  point.size,
  title,
  plot.expressing.cells.last,
  nrow,
  ncol
)
## S4 method for signature 'SingleCellExperiment'
GeneScatterPlot(
  object,
  genes = "",
  return.plot = FALSE,
  dim.reduction.type = "tsne",
  point.size = 0.7,
  title = "",
  plot.expressing.cells.last = FALSE,
  nrow = NULL,
  ncol = NULL
)
 | 
| object | of  | 
| genes | a character vector of the genes to be visualized | 
| return.plot | whether to return the ggplot2 object or just
draw it (default  | 
| dim.reduction.type | "tsne" or "umap" (default "tsne") | 
| point.size | point size (default 0.7) | 
| title | text to write above the plot | 
| plot.expressing.cells.last | whether to plot the expressing genes last to make the points more visible | 
| nrow | a positive integer that specifies the number of rows in
the plot grid. Default is  | 
| ncol | a positive integer that specifies the number of columns
in the plot grid. Default is  | 
ggplot2 object if return.plot=TRUE
| 1 2 3 4 5 6 7 8 9 10 | library(SingleCellExperiment)
sce <- SingleCellExperiment(assays = list(logcounts = pbmc3k_500))
sce <- PrepareILoReg(sce)
## These settings are just to accelerate the example, use the defaults.
sce <- RunParallelICP(sce,L=2,threads=1,C=0.1,k=5,r=1)
sce <- RunPCA(sce,p=5)
sce <- RunTSNE(sce)
GeneScatterPlot(sce,"CD14",dim.reduction.type="tsne")
sce <- RunUMAP(sce)
GeneScatterPlot(sce,"CD14",dim.reduction.type="umap")
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.