RunPCA: PCA transformation of the joint probability matrix

Description Usage Arguments Value Examples

Description

Perform the PCA transformation of the joint probability matrix, which reduces the dimensionality from k*L to p

Usage

1
2
3
4
RunPCA.SingleCellExperiment(object, p, scale, threshold)

## S4 method for signature 'SingleCellExperiment'
RunPCA(object, p = 50, scale = FALSE, threshold = 0)

Arguments

object

object of SingleCellExperiment class

p

a positive integer denoting the number of principal components to calculate and select. Default is 50.

scale

a logical specifying whether the probabilities should be standardized to unit-variance before running PCA. Default is FALSE.

threshold

a thresfold for filtering out ICP runs before PCA with the lower terminal projection accuracy below the threshold. Default is 0.

Value

object of SingleCellExperiment class

Examples

1
2
3
4
5
6
library(SingleCellExperiment)
sce <- SingleCellExperiment(assays = list(logcounts = pbmc3k_500))
sce <- PrepareILoReg(sce)
## These settings are just to accelerate the example, use the defaults.
sce <- RunParallelICP(sce,L=2,threads=1,C=0.1,k=5,r=1)
sce <- RunPCA(sce,p=5)

ILoReg documentation built on Nov. 8, 2020, 8:20 p.m.