Nothing
### =========================================================================
### Group elements of a vector-like object into a list-like object
### -------------------------------------------------------------------------
###
### What should go in this file?
###
### - All "relist" methods defined in IRanges should go here.
### - extractList() generic and default method.
###
### TODO: Maybe put the default methods for the reverse transformations here
### (unlist, unsplit, and unsplit<-).
###
### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### relist()
###
setMethod("relist", c("ANY", "PartitioningByEnd"),
function(flesh, skeleton)
{
ans_class <- relistToClass(flesh)
skeleton_len <- length(skeleton)
if (skeleton_len == 0L) {
flesh_len2 <- 0L
} else {
flesh_len2 <- end(skeleton)[skeleton_len]
}
if (NROW(flesh) != flesh_len2)
stop("shape of 'skeleton' is not compatible with 'NROW(flesh)'")
if (extends(ans_class, "CompressedList"))
return(newCompressedList0(ans_class, flesh, skeleton))
if (!extends(ans_class, "SimpleList"))
stop("don't know how to split or relist a ", class(flesh),
" object as a ", ans_class, " object")
listData <- lapply(skeleton, function(i) extractROWS(flesh, i))
## TODO: Once "window" methods have been revisited/tested and
## 'window(flesh, start=start, end=end)' is guaranteed to do the
## right thing for any 'flesh' object (in particular it subsets a
## data.frame-like object along the rows), then replace the line above
## by the code below (which should be more efficient):
#skeleton_start <- start(skeleton)
#skeleton_end <- end(skeleton)
#FUN <- function(start, end) window(flesh, start=start, end=end)
#names(skeleton_start) <- names(skeleton)
#listData <- mapply(FUN, skeleton_start, skeleton_end)
## or, if we don't trust mapply():
#skeleton_start <- start(skeleton)
#skeleton_end <- end(skeleton)
#X <- seq_len(skeleton_len)
#names(X) <- names(skeleton)
#listData <- lapply(X, function(i) window(flesh,
# start=skeleton_start[i],
# end=skeleton_end[i]))
S4Vectors:::new_SimpleList_from_list(ans_class, listData)
}
)
setMethod("relist", c("ANY", "List"),
function(flesh, skeleton)
{
relist(flesh, PartitioningByEnd(skeleton))
}
)
setMethod("relist", c("Vector", "list"),
function(flesh, skeleton)
{
relist(flesh, PartitioningByEnd(skeleton))
}
)
### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### default_splitAsList()
###
### 'f' is assumed to be an integer vector with no NAs.
.splitAsList_by_integer <- function(x, f, drop)
{
if (length(f) > NROW(x))
stop("'f' cannot be longer than 'NROW(x)' when it's an integer vector")
if (!identical(drop, FALSE))
warning("'drop' is ignored when 'f' is an integer vector")
f_is_not_sorted <- S4Vectors:::isNotSorted(f)
if (f_is_not_sorted) {
idx <- base::order(f)
f <- f[idx]
x <- extractROWS(x, idx)
}
tmp <- Rle(f)
f <- cumsum(runLength(tmp))
names(f) <- as.character(runValue(tmp))
f <- PartitioningByEnd(f)
relist(x, f)
}
### 'f' is assumed to be a factor with no NAs.
.splitAsList_by_factor <- function(x, f, drop)
{
x_NROW <- NROW(x)
f_len <- length(f)
f_levels <- levels(f)
f <- as.integer(f)
if (f_len > x_NROW)
f <- head(f, n=x_NROW)
f_is_not_sorted <- S4Vectors:::isNotSorted(f)
if (f_is_not_sorted) {
idx <- base::order(f)
x <- extractROWS(x, idx)
}
f <- tabulate(f, nbins=length(f_levels))
names(f) <- f_levels
if (drop)
f <- f[f != 0L]
f <- cumsum(f)
f <- PartitioningByEnd(f)
relist(x, f)
}
### 'f' is assumed to be an integer-Rle object with no NAs.
.splitAsList_by_integer_Rle <- function(x, f, drop)
{
if (length(f) > NROW(x))
stop("'f' cannot be longer than data when it's an integer-Rle")
if (!identical(drop, FALSE))
warning("'drop' is ignored when 'f' is an integer-Rle")
f_vals <- runValue(f)
f_lens <- runLength(f)
f_is_not_sorted <- S4Vectors:::isNotSorted(f_vals)
if (f_is_not_sorted) {
idx <- base::order(f_vals)
xranges <- successiveIRanges(f_lens)[idx]
f_vals <- f_vals[idx]
f_lens <- f_lens[idx]
x <- extractROWS(x, xranges)
}
tmp <- Rle(f_vals, f_lens)
f <- cumsum(runLength(tmp))
names(f) <- as.character(runValue(tmp))
f <- PartitioningByEnd(f)
relist(x, f)
}
### 'f' is assumed to be an Rle object with no NAs.
.splitAsList_by_Rle <- function(x, f, drop)
{
x_NROW <- NROW(x)
f_len <- length(f)
f_vals <- runValue(f)
if (!is.factor(f_vals)) {
f_vals <- as.factor(f_vals)
if (f_len > x_NROW) {
runValue(f) <- f_vals
f <- head(f, n=x_NROW)
f_vals <- runValue(f)
}
} else if (f_len > x_NROW) {
f <- head(f, n=x_NROW)
f_vals <- runValue(f)
}
f_lens <- runLength(f)
f_levels <- levels(f_vals)
f_vals <- as.integer(f_vals)
f_is_not_sorted <- S4Vectors:::isNotSorted(f_vals)
if (f_is_not_sorted) {
idx <- base::order(f_vals)
xranges <- successiveIRanges(f_lens)[idx]
x <- extractROWS(x, xranges)
f <- S4Vectors:::tabulate2(f_vals, nbins=length(f_levels),
weight=f_lens)
if (drop) {
f_levels <- f_levels[f != 0L]
f <- f[f != 0L]
}
} else if (length(f_vals) == length(f_levels) || drop) {
if (drop) f_levels <- as.character(runValue(f))
f <- f_lens
} else {
f <- integer(length(f_levels))
f[f_vals] <- f_lens
}
names(f) <- f_levels
f <- cumsum(f)
f <- PartitioningByEnd(f)
relist(x, f)
}
toFactor <- function(x) {
if (is(x, "Rle")) {
runValue(x) <- as.factor(runValue(x))
x
} else as.factor(x)
}
### Took this out of the still-in-incubation LazyList package
interaction2 <- function(factors) {
nI <- length(factors)
nx <- length(factors[[1L]])
factors <- lapply(factors, toFactor)
useRle <- any(vapply(factors, is, logical(1), "Rle"))
if (useRle) {
group <- as(factors[[1L]], "Rle")
runValue(group) <- as.integer(runValue(group))
} else {
group <- as.integer(factors[[1L]])
}
ngroup <- nlevels(factors[[1L]])
for (i in tail(seq_len(nI), -1L)) {
index <- factors[[i]]
if (useRle) {
offset <- as(index, "Rle")
runValue(offset) <- ngroup * (as.integer(runValue(offset)) - 1L)
} else {
offset <- ngroup * (as.integer(index) - 1L)
}
group <- group + offset
ngroup <- ngroup * nlevels(index)
}
if (useRle) {
runValue(group) <- structure(runValue(group),
levels=as.character(seq_len(ngroup)),
class="factor")
group
} else {
structure(group, levels=as.character(seq_len(ngroup)), class="factor")
}
}
normSplitFactor <- function(f, x) {
if (is(f, "formula")) {
if (length(f) == 3L)
stop("formula 'f' should not have a left hand side")
f <- S4Vectors:::formulaValues(x, f)
}
if (is.list(f) || is(f, "List")) {
if (length(f) == 1L) {
f <- toFactor(f[[1L]])
} else {
f <- interaction2(f)
}
}
f_len <- length(f)
if (f_len < NROW(x)) {
if (f_len == 0L)
stop("split factor has length 0 but 'NROW(x)' is > 0")
if (NROW(x) %% f_len != 0L)
warning("'NROW(x)' is not a multiple of split factor length")
f <- rep(f, length.out=NROW(x))
}
f
}
## about 3X faster than as.factor on a ~450k tx ids
## caveats: no NAs, and radix sort of levels does not support all encodings
## todo: Would be faster if sort() returned grouping info,
## but then we might coalesce this with the order/split.
## todo: if we could pass na.rm=TRUE to grouping(), NAs would be handled
as.factor2 <- function(x) {
if (is.factor(x))
return(x)
if (is.null(x))
return(factor())
g <- grouping(x)
p <- PartitioningByEnd(relist(g))
levs <- as.character(x[g[end(p)]])
if (is.character(x)) {
o <- order(levs, method="radix")
map <- integer(length(levs)) # or rep(NA_integer_, length(levs)) for NAs
map[o] <- seq_along(o)
ref <- map[togroup(p)]
levs <- levs[o]
} else {
ref <- togroup(p)
}
f <- integer(length(x))
f[g] <- ref
structure(f, levels=levs, class="factor")
}
### Called by the splitAsList,ANY,ANY method defined in the S4Vectors package.
default_splitAsList <- function(x, f, drop=FALSE)
{
if (!isTRUEorFALSE(drop))
stop("'drop' must be TRUE or FALSE")
f <- normSplitFactor(f, x)
if (anyNA(f)) {
keep_idx <- which(!is.na(f))
x <- extractROWS(x, keep_idx)
f <- f[keep_idx]
}
if (is.integer(f))
return(.splitAsList_by_integer(x, f, drop))
if (!is(f, "Rle")) {
f <- as.factor2(f)
return(.splitAsList_by_factor(x, f, drop))
}
## From now on, 'f' is guaranteed to be an Rle.
f_vals <- runValue(f)
if (!((is.vector(f_vals) && is.atomic(f_vals)) || is.factor(f_vals)))
stop("'f' must be an atomic vector or a factor (possibly in Rle form)")
if (is.integer(f_vals))
return(.splitAsList_by_integer_Rle(x, f, drop))
return(.splitAsList_by_Rle(x, f, drop))
}
### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### extractList()
###
### Would extractGroups be a better name for this?
### Or extractGroupedROWS? (analog to extractROWS, except that the ROWS are
### grouped).
###
### 'x' must be a vector-like object and 'i' a list-like object.
### Must return a list-like object parallel to 'i' and with same "shape" as
### 'i' (i.e. same elementNROWS). If 'i' has names, they should be
### propagated to the returned value. The list elements of the returned value
### must have the class of 'x'.
setGeneric("extractList", function(x, i) standardGeneric("extractList"))
### Default method.
setMethod("extractList", c("ANY", "ANY"),
function(x, i)
{
if (is(i, "IntegerRanges"))
return(relist(extractROWS(x, i), i))
if (is.list(i)) {
unlisted_i <- unlist(i, recursive=FALSE, use.names=FALSE)
} else {
i <- as(i, "List", strict=FALSE)
## The various "unlist" methods for List derivatives don't know
## how to operate recursively and don't support the 'recursive'
## arg.
unlisted_i <- unlist(i, use.names=FALSE)
}
relist(extractROWS(x, unlisted_i), i)
}
)
### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### resplit() and regroup()
###
### Similar to regroupBySupergroup() but there is no assumption that
### the new grouping is a super-grouping of the current grouping. For
### resplit(), the grouping is expressed as a factor, although it is
### effectively a synonym of regroup(), since the latter coerces the
### input to a Grouping.
###
resplit <- function(x, f) {
regroup(x, f)
}
regroup <- function(x, g) {
g <- as(g, "Grouping")
gends <- end(PartitioningByEnd(g))
xg <- x[unlist(g, use.names=FALSE)]
p <- PartitioningByEnd(end(PartitioningByEnd(xg))[gends])
names(p) <- names(g)
relist(unlist(xg, use.names=FALSE, recursive=FALSE), p)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.