Description Usage Arguments Details Value Examples
Tests whether a given set of genes are significantly shifted to the left or right of the Michaelis-Menten curve.
| 1 |   M3DropTestShift(expr_mat, genes_to_test, name="", background=rownames(expr_mat), suppress.plot=FALSE)
 | 
| expr_mat | a numeric matrix of normalized (not log-transformed) expression values, columns = samples, rows = genes. | 
| genes_to_test | vector of gene names to test. | 
| name | string used to title the plot. | 
| background | vector of gene names to test against. (default = all genes) | 
| suppress.plot | logical, whether to the fitted Michaelis-Menten curve and highlight the given set of genes to test. | 
Fits a Michaelis-Menten function to the dropout-rate of the provided data, then tests whether a given set of genes (eg. pseudogenes) is significantly shifted left or right of the curve. Horizontal residuals are calculated as :
log_10(S) - log_10( (K * (1 - P)) / P )
. Uses a Wilcox rank-sum test/Mann-Whitney U test to compare the residuals for the given genes to the residuals for all genes.
A one row dataframe with columns: sample (median horizontal residual of genes in the test set), pop (median horizontal residual of genes in the background set), p.value
| 1 2 3 |   library(M3DExampleData)
  gene_set <- c("Dppa2","Tdgf1","Rnf130","Tet1","Uhrf1","Pttg1","Zfp600","Stat1")
  shift_output <- M3DropTestShift(Mmus_example_list$data, gene_set)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.