Description Usage Format Note Author(s) Source See Also Examples
This data set provides flag
objects that can be applied to arrayCGH
objects in order to normalize them.
1 |
These flag
objects typically take part to a normalization process:
amplicon.flag | flags spots with high log-ratios (temp flag) | |
chromosome.flag | flags spots located on sexual chromosomes (named "X" and "Y") | |
control.flag | flag control spots | |
global.spatial.flag | corrects arrayCGH from global spatial trend on the array | |
local.spatial.flag | flags spots belonging to local spatial bias zones on the array | |
num.chromosome.flag | flags spots located on sexual chromosomes (named 23 and 24) | |
position.flag | flag spots with no available genome position | |
replicate.flag | flag spots with poor within-clone-replicate consitency | |
ref.snr.flag | flags spots with low signal to noise ratio for reference | |
dapi.snr.flag | flags spots with low signal to noise ratio for DAPI | |
SNR.flag | flags spots with low signal to noise ratio | |
spot.corr.flag | flags spots with low correlation coefficient after image analysis | |
spot.flag | flags spots excluded by the image analysis software | |
unique.flag | exclude last non-flagged spot of a clone | |
val.mark.flag | flags spots corresponding to bad quality clones | |
intensity.flag | corrects for an intensity effect (using loess regression) | |
People interested in tools for array-CGH analysis can visit our web-page: http://bioinfo.curie.fr.
Pierre Neuvial, manor@curie.fr.
Institut Curie, manor@curie.fr.
spatial
, norm.arrayCGH
,
flag
, flag.summary
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 | data(flags)
### complete normalization of an arrayCGH object (with spatial gradient):
## Initialize flag$args
flag.list1 <- list(local.spatial=local.spatial.flag,
global.spatial=global.spatial.flag, spot=spot.flag, SNR=SNR.flag,
val.mark=val.mark.flag, unique=unique.flag,
amplicon=amplicon.flag, chromosome=chromosome.flag,
replicate=replicate.flag)
data(spatial)
## Not run: gradient.norm <- norm(gradient, flag.list=flag.list1,
var="LogRatio", FUN=median, na.rm=TRUE)
## End(Not run)
print(gradient.norm$flags) ## spot-level flag summary (computed by flag.summary)
### complete normalization of an arrayCGH object (with local spatial bias):
## Initialize flag$args
flag.list2 <- list(spatial=local.spatial.flag, spot=spot.corr.flag,
ref.snr=ref.snr.flag, dapi.snr=dapi.snr.flag, rep=rep.flag,
unique=unique.flag)
flag.list2$spatial$args <- alist(var="ScaledLogRatio", by.var=NULL,
nk=5, prop=0.25, thr=0.15, beta=1, family="symmetric")
flag.list2$spot$args <- alist(var="SpotFlag")
flag.list2$spot$char <- "O"
flag.list2$spot$label <- "Image analysis"
## Not run: edge.norm <- norm(edge, flag.list=flag.list2,
var="LogRatio", FUN=median, na.rm=TRUE)
## End(Not run)
print(edge.norm$flags) ## spot-level flag summary (computed by flag.summary)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.