Description Usage Arguments Details Value Note Author(s) References See Also Examples
Normalize an object of type arrayCGH
using a list of criteria
specified as (temporary or permanent) flags. If a replicate identifier
(clone name) is provided, a single target value is computed for all the replicates.
The normalization coefficient is computed as a function, and is applied to all good quality spots of the array.
1 2 |
arrayCGH |
an object of type |
flag.list |
a list of objects of type flag |
var |
a variable name (from |
printTime |
boolean value; if |
FUN |
an aggregation function (e.g. mean, median) to compute a normalization coefficient; default is median |
... |
further arguments to be passed to FUN |
The two flag types are treated differently : - permanent flags detect poor quality spots, which are removed from further analysis - temporary flags detect good quality spots that would bias the normalization coefficient if they were not excluded from its computation, e.g. amplicons or sexual chromosomes. Thus they are not taken into account for the computation of the coefficient, but at the end of the analysis they are normalized as any good quality spots of the array.
The normalization coefficient is computed as a function (e.g. mean or median) of the target value (e.g. log-ratios); it is then applied to all good quality spots (including temporary flags), i.e. substracted from each target value.
If clone level information is available (i.e. if
arrayCGH$cloneValues
is not null), a normalized mean target
value and basic statistics (such as the number of replicates per
clone) are calculated for each clone.
an object of type arrayCGH
People interested in tools for array-CGH analysis can visit our web-page: http://bioinfo.curie.fr.
Pierre Neuvial, manor@curie.fr.
P. Neuvial, P. Hup?, I. Brito, S. Liva, E. Mani?, C. Brennetot, A. Aurias, F. Radvanyi, and E. Barillot. Spatial normalization of array-CGH data. BMC Bioinformatics, 7(1):264. May 2006.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 | data(spatial)
data(flags)
### 'edge': local spatial bias
## define a list of flags to be applied
flag.list1 <- list(spatial=local.spatial.flag, spot=spot.corr.flag,
ref.snr=ref.snr.flag, dapi.snr=dapi.snr.flag, rep=rep.flag,
unique=unique.flag)
flag.list1$spatial$args <- alist(var="ScaledLogRatio", by.var=NULL,
nk=5, prop=0.25, thr=0.15, beta=1, family="symmetric")
flag.list1$spot$args <- alist(var="SpotFlag")
flag.list1$spot$char <- "O"
flag.list1$spot$label <- "Image analysis"
## normalize arrayCGH
edge.norm <- norm(edge, flag.list=flag.list1,
var="LogRatio", FUN=median, na.rm=TRUE)
print(edge.norm$flags) ## spot-level flag summary (computed by flag.summary)
## aggregate arrayCGH without normalization
edge.nonorm <- norm(edge, flag.list=NULL, var="LogRatio",
FUN=median, na.rm=TRUE)
## sort genomic informations
edge.norm <- sort(edge.norm, position.var="PosOrder")
edge.nonorm <- sort(edge.nonorm, position.var="PosOrder")
## plot genomic profiles
layout(matrix(c(1,2,4,5,3,3,6,6), 4,2),width=c(1, 4), height=c(6,1,6,1))
report.plot(edge.nonorm, chrLim="LimitChr", layout=FALSE,
main="Pangenomic representation (before normalization)", zlim=c(-1,1),
ylim=c(-3,1))
report.plot(edge.norm, chrLim="LimitChr", layout=FALSE,
main="Pangenomic representation (after normalization)", zlim=c(-1,1),
ylim=c(-3,1))
### 'gradient': global array Trend
## define a list of flags to be applied
flag.list2 <- list(
spot=spot.flag, global.spatial=global.spatial.flag, SNR=SNR.flag,
val.mark=val.mark.flag, position=position.flag, unique=unique.flag,
amplicon=amplicon.flag, replicate=replicate.flag,
chromosome=chromosome.flag)
## normalize arrayCGH
gradient.norm <- norm(gradient, flag.list=flag.list2,
var="LogRatio", FUN=median, na.rm=TRUE)
## aggregate arrayCGH without normalization
gradient.nonorm <- norm(gradient, flag.list=NULL, var="LogRatio", FUN=median, na.rm=TRUE)
## sort genomic informations
gradient.norm <- sort(gradient.norm)
gradient.nonorm <- sort(gradient.nonorm)
## plot genomic profiles
layout(matrix(c(1,2,4,5,3,3,6,6), 4,2),width=c(1, 4), height=c(6,1,6,1))
report.plot(gradient.nonorm, chrLim="LimitChr", layout=FALSE,
main="Pangenomic representation (before normalization)", zlim=c(-2,2),
ylim=c(-3,2))
report.plot(gradient.norm, chrLim="LimitChr", layout=FALSE,
main="Pangenomic representation (after normalization)", zlim=c(-2,2),
ylim=c(-3,2))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.