R/MIGSAres-genesManipulation.R

#' Get or edit MIGSAres with/by genes that contributed to enrichment
#'
#' \code{genesInSets} returns a data.frame with gene sets as rows, genes as
#' columns, and as value the number of experiments in which each gene
#' contributed to enrich each gene set.
#' If it was enriched only by SEA then it returns the genes that contributed in
#' SEA. If it was enriched only by GSEA then it returns the genes that
#' contributed in GSEA. If it was enriched by both then it returns the genes
#' that contributed in both.
#' \code{filterByGenes} returns a MIGSAres object with only the gene sets which
#' resulted enriched by at least one gene from a provided list.
#'
#' @param migsaRes MIGSAres object.
#' @param genes character vector of the interest genes for MIGSAres filtering.
#'
#' @return If genesInSets: a data.frame with the number of experiments in which
#' each gene contributed to enrich each gene set. If filterByGenes: A MIGSAres
#' object containing only the gene sets in which provided genes contributed to
#' enrichment.
#'
#' @docType methods
#' @name MIGSAres-genes
#' @rdname MIGSAres-genesManipulation
#' @seealso \code{\link{setEnrCutoff}}
#'
#' @examples
#' data(migsaRes)
#' ###### genesInSets
#' ## First lets set a cutoff of 0.1
#' migsaResWCoff <- setEnrCutoff(migsaRes, 0.1)
#' gInSets <- genesInSets(migsaResWCoff)
#' class(gInSets)
#' # matrix
#'
#' ## Now we can do stuff as check which genes enriched a gene set in all (two)
#' ## experiments.
#' gInSets[rowSums(gInSets == 2) > 0, colSums(gInSets == 2) > 0]
#' ###### filterByGenes
#' ## Suppose we are interested in studying these genes:
#' intGenes <- c("g10", "g91", "g388", "g742", "g874")
#' migsaResIntGenes <- filterByGenes(migsaResWCoff, intGenes)
#' ## Now in migsaResIntGenes we have the MIGSA results of the gene sets in
#' ## which at least one gene of our list contributed to enrich.
#' migsaResIntGenes
setGeneric(name = "MIGSAres-genes", def = function(migsaRes) {
  standardGeneric("MIGSAres-genes")
})

#' @name genesInSets
#' @rdname MIGSAres-genesManipulation
#' @aliases genesInSets,MIGSAres-method
#' @exportMethod genesInSets
#'
setGeneric(name = "genesInSets", def = function(migsaRes) {
  standardGeneric("genesInSets")
})

#' @rdname MIGSAres-genesManipulation
#' @aliases genesInSets,MIGSAres-method
#' @include MIGSAres-setEnrCutoff.R
#'
setMethod(
  f = "genesInSets",
  signature = c("MIGSAres"),
  definition = function(migsaRes) {
    stopifnot(validObject(migsaRes))

    data_frame_all <- migsaRes@migsa_res_all
    setkey(data_frame_all, gene_set_name, id)

    # we must have a cutoff for this function
    migsaRes <- setDefaultEnrCutoff(migsaRes)
    enr_cutoff <- enrCutoff(migsaRes)

    # when cutoff is 1 then it must enrich everything.
    enr_cutoff <- ifelse(enr_cutoff == 1, 1.1, enr_cutoff)

    # get the gene sets name and id
    gsets <- apply(
      unique(data_frame_all[, list(gene_set_name, id)]), 2,
      as.character
    )
    res <- lapply(split(gsets, seq(nrow(gsets))), function(gset) {
      # for each gene set get the data
      actData <- data_frame_all[gene_set_name == gset[[1]] &
        id == gset[[2]], ]
      enr_genes <- apply(actData, 1, function(y) {
        # for each gene set data
        gsea_enr_genes <- NULL
        sea_enr_genes <- NULL

        gsea_pval <- as.numeric(y[["GSEA_pval"]])
        sea_pval <- as.numeric(y[["SEA_pval"]])

        if (!is.na(gsea_pval) && gsea_pval < enr_cutoff) {
          # if was enriched by gsea get its enriching genes
          gsea_enr_genes <- gsub(" ", "", unlist(
            strsplit(
              as.character(y[["GSEA_enriching_genes"]]),
              ","
            )
          ))
        }

        if (!is.na(sea_pval) && sea_pval < enr_cutoff) {
          # if was enriched by sea get its enriching genes
          sea_enr_genes <- gsub(" ", "", unlist(
            strsplit(
              as.character(y[["SEA_enriching_genes"]]),
              ","
            )
          ))
        }

        enr_genes <- union(gsea_enr_genes, sea_enr_genes)
        return(enr_genes)
      })

      if (is.list(enr_genes)) {
        enr_genes <- do.call(c, enr_genes)
      } else {
        enr_genes <- c(enr_genes)
      }

      res <- NA
      if (length(enr_genes) > 0) {
        # if there was any gene then sort them
        res <- sort(table(enr_genes), decreasing = !FALSE)
      }

      return(res)
    })
    names(res) <- paste(gsets[, 1], gsets[, 2], sep = "_")

    gsets <- unique(unlist(lapply(res, names)))
    # lets turn these results (list) into a data frame
    finalRes <- do.call(rbind, lapply(names(res), function(y) {
      actRes <- res[[y]]
      newRes <- rep(0, length(gsets))
      if (!is.na(actRes[[1]])) {
        names(newRes) <- gsets
        newRes[names(actRes)] <- actRes
      }
      return(newRes)
    }))
    rownames(finalRes) <- names(res)

    return(finalRes)
  }
)

#' @name filterByGenes
#' @rdname MIGSAres-genesManipulation
#' @aliases filterByGenes,MIGSAres,character-method
#' @exportMethod filterByGenes
#'
setGeneric(name = "filterByGenes", def = function(migsaRes, genes) {
  standardGeneric("filterByGenes")
})

#' @rdname MIGSAres-genesManipulation
#' @aliases filterByGenes,MIGSAres,character-method
#' @include MIGSAres-setEnrCutoff.R
#'
setMethod(
  f = "filterByGenes",
  signature = c("MIGSAres", "character"),
  definition = function(migsaRes, genes) {
    stopifnot(validObject(migsaRes))
    stopifnot(length(genes) > 0)

    # we must have a cutoff for this function
    migsaRes <- setDefaultEnrCutoff(migsaRes)

    # lets get just gene sets enriched in at least one dataset
    actRes <- migsaRes[rowSums(migsaRes[, -(1:3)], na.rm = !FALSE) > 0, ]

    if (!is(actRes, "MIGSAres")) {
      warning("No enriched gene set with used cutOff.")
      return(data.frame())
    }
    migsaRes_genes <- genesInSets(actRes)

    if (any(genes %in% colnames(migsaRes_genes))) {
      # if we have any of our interest genes in the enriching ones,
      # then remove the other genes
      migsaRes_genes <- migsaRes_genes[, genes, drop = FALSE]

      # keet just the gene sets enriched by at least one of these genes
      migsaRes_genes <- migsaRes_genes[
        rowSums(migsaRes_genes, na.rm = !FALSE) > 0, ,
        drop = FALSE
      ]

      # complete gene sets names
      gsNames <- paste(migsaRes[, 3, drop = TRUE],
        migsaRes[, 1, drop = TRUE],
        sep = "_"
      )

      # so return the subsetted MIGSAres object
      res <- migsaRes[gsNames %in% rownames(migsaRes_genes), ,
        drop = FALSE
      ]

      if (nrow(res) != nrow(migsaRes_genes)) {
        warning("Different number of rows after filtering by genes.")
      }
    } else {
      warning("Provided genes did not contribute to enrich any gene set.")
      res <- data.frame()
    }

    return(res)
  }
)

Try the MIGSA package in your browser

Any scripts or data that you put into this service are public.

MIGSA documentation built on Nov. 8, 2020, 8:26 p.m.