Description Usage Arguments Value Author(s) See Also Examples
'ClusterList' generates a list of both significant and nonsignificant clusters, with cluster number, Mantel cluster correlation and size
1 | ClusterList(p.val, clus.size, mantel.cors)
|
p.val |
permutation p-value returned from 'PermutationTest' |
clus.size |
vector of k cluster sizes returned from 'GetCluster' |
mantel.cors |
orignal, unpermuted k Mantel correlations returned from 'MantelCorrs' |
A list with components:
SignificantClusters |
clusters with significant Mantel correlation, equal to or larger than the permutation p-value returned by 'PermutationTest' |
NonSignificantClusters |
clusters with nonsignificant Mantel correlation, smaller than the permutation p-value returned by 'PermutationTest' |
Brian Steinmeyer
'PermutationTest'
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | # simulate a p x n microarray expression dataset, where p = genes and n = samples
data.sep <- rbind(matrix(rnorm(1000), ncol=50), matrix(rnorm(1000, mean=5), ncol=50))
noise <- matrix(runif(40000), ncol=1000)
data <- t(cbind(data.sep, noise))
data <- data[1:200, ]
# data has p = 1,050 genes and n = 40 samples
clusters.result <- GetClusters(data, 100, 100)
dist.matrices <- DistMatrices(data, clusters.result$clusters)
mantel.corrs <- MantelCorrs(dist.matrices$Dfull, dist.matrices$Dsubsets)
permutation.result <- PermutationTest(dist.matrices$Dfull, dist.matrices$Dsubsets, 100, 40, 0.05)
# generate both significant and non-significant gene clusters
cluster.list <- ClusterList(permutation.result, clusters.result$cluster.sizes, mantel.corrs)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.