Description Usage Arguments Value Note Author(s) See Also Examples
'GetClusters' uses an overly large k with the 'kmeans' function to over-partition p variables (rows = genes) from n objects (cols = samples) from a given data matrix 'x.data'
1 | GetClusters(x.data, num.k, num.iters)
|
x.data |
p x n data matrix of numeric values |
num.k |
number of k partitions desired |
num.iters |
number of iterations - recommend >= 100 |
'GetClusters' returns a list with the following components:
clusters |
cluster assignment from 'kmeans' |
cluster.sizes |
size of each cluster k from 'kmeans' |
The input data matrix, x.data, must be numeric (e.g., gene-expression values). We recommend using 'num.k' = one-half the number of genes and 'num.iters' greater than 50
Brian Steinmeyer
'kmeans'
1 2 3 4 5 6 7 8 | # simulate a p x n microarray expression dataset, where p = genes and n = samples
data.sep <- rbind(matrix(rnorm(1000), ncol=50), matrix(rnorm(1000, mean=5), ncol=50))
noise <- matrix(runif(40000), ncol=1000)
data <- t(cbind(data.sep, noise))
data <- data[1:200, ]
# data has p = 1,050 genes and n = 40 samples
clusters.result <- GetClusters(data, 100, 100)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.