Description Usage Arguments Value Note Author(s) See Also Examples
'DistMatrices' uses 'dist' to compute dissimilarity matrices for 'data' and each cluster k from 'GetClusters'
1 | DistMatrices(x.data, cluster.assignment)
|
x.data |
original 'data' matrix |
cluster.assignment |
cluster assignment vector, "clusters", returned by 'GetClusters' |
returns a list with two components:
Dsubsets |
dissimilarity matrices for each cluster k |
Dfull |
dissimilarity matrix for the original 'data' |
'GetClusters' should be executed prior to 'DistMatrices'
Brian Steinmeyer
'GetClusters'
1 2 3 4 5 6 7 8 9 | # simulate a p x n microarray expression dataset, where p = genes and n = samples
data.sep <- rbind(matrix(rnorm(1000), ncol=50), matrix(rnorm(1000, mean=5), ncol=50))
noise <- matrix(runif(40000), ncol=1000)
data <- t(cbind(data.sep, noise))
data <- data[1:200, ]
# data has p = 1,050 genes and n = 40 samples
clusters.result <- GetClusters(data, 100, 100)
dissimilarity.matrices <- DistMatrices(data, clusters.result$clusters)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.