copaInt

Description

Counts outliers by Tibshirani-Hastie method by calling outCount after setting up list or by rank outlier method by calling outRank

Usage

1
2
copaInt(dataSet, phenotype, tails, thres = 0.05, method='Tibshirani',
corr=FALSE, offsets=NULL)

Arguments

dataSet

Set of matrices of molecular data

phenotype

Vector of 1 for case, 0 for control

tails

Vector equal to number of matrices with values left or right for where to find outliers

thres

alpha value

method

Tibshirani , Rank

corr

Whether to correct for normal outliers

offsets

A vector equal to the number of matrices which sets the minimum value relative to normal to call outlier (corrected rank only)

Value

A vector with outlier counts by gene

References

Ochs, M. F., Farrar, J. E., Considine, M., Wei, Y., Meshinchi, S., & Arceci, R. J. (n.d.). Outlier Analysis and Top Scoring Pair for Integrated Data Analysis and Biomarker Discovery. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 1-1. doi:10.1109/tcbb.2013.153

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
data(ExampleData)

#Set up phenotype
phenotype <- pheno
names(phenotype) <- colnames(cnv)

#set up values for expr-meth-cnv in that order
tailLRL <- c('left', 'right', 'left')

#setup dataSet
dataSet <- list(expr, meth, cnv)

tibLRL <- copaInt(dataSet, phenotype, tails=tailLRL)