outCallTib

Share:

Description

Counts outliers by the Tibshirani and Hastie method and generates a list object with all outliers noted

Usage

1
outCallTib (dataSet, phenotype, tail='right', corr=FALSE, names=NULL)

Arguments

dataSet

Set of matrices of molecular data

phenotype

A vector of 0s and 1s of length nSample, where 1 = case, 0 = control

tail

Vector equal to number of matrices with values 'left' or 'right' for where to find outliers

corr

whether to correct for normal outliers ONLY for compatibility, since method does not allow determining specific changes in cases, it will just print message if corr = TRUE

names

Vector equal to number of matrices to name molecular type of data (e.g., 'CNV').

Value

A list with all specific outlier calls for each molecular type in each case sample

References

Ochs, M. F., Farrar, J. E., Considine, M., Wei, Y., Meshinchi, S., & Arceci, R. J. (n.d.). Outlier Analysis and Top Scoring Pair for Integrated Data Analysis and Biomarker Discovery. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 1-1. doi:10.1109/tcbb.2013.153

D. Ghosh. (2010). Discrete Nonparametric Algorithms for Outlier Detection with Genomic Data. J. Biopharmaceutical Statistics, 20(2), 193-208.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
data(ExampleData)
data('KEGG_BC_GS')

# Set up dataSet
dataSet <- list(expr, meth, cnv)

# Set up Phenotype
phenotype <- pheno
names(phenotype) <- colnames(cnv)

# set up values for expr-meth-cnv in that order
tailLRL <- c('left', 'right', 'left')

outTibLRL <- outCallTib(dataSet, phenotype, names=c('Expr', 'Meth', 'CNV'), tail=tailLRL)