Description Usage Arguments Value References Examples
Counts outliers by the Ghosh method.
1 2 |
dataSet |
Set of matrices of molecular data |
phenotype |
Vector of 1 for case, 0 for control |
thres |
Alpha value |
tail |
Vector equal to number of matrices with values 'left' or 'right' for where to find outliers |
corr |
Whether to correct for normal outliers |
offsets |
Vector equal to number of matrices which sets minimum value relative to normal to call outlier (corrected rank only) |
A vector with outlier counts by gene
Ochs, M. F., Farrar, J. E., Considine, M., Wei, Y., Meshinchi, S., & Arceci, R. J. (n.d.). Outlier Analysis and Top Scoring Pair for Integrated Data Analysis and Biomarker Discovery. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 1-1. doi:10.1109/tcbb.2013.153
D. Ghosh. (2010). Discrete Nonparametric Algorithms for Outlier Detection with Genomic Data. J. Biopharmaceutical Statistics, 20(2), 193-208.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | data(ExampleData)
# Set up Phenotype
phenotype <- pheno
names(phenotype) <- colnames(cnv)
#set up dataSet
dataSet <- list(expr, meth, cnv)
# set up values for expr-meth-cnv in that order
tailLRL <- c('left', 'right', 'left')
outRankLRL <- outRank(dataSet, phenotype, thres= 0.05, tail=tailLRL,
corr=FALSE, offsets=NULL)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.