Nothing
#' @export InternalReferencing
InternalReferencing <- function(Spectrum_data, Fid_info, method = c("max", "thres"),
range = c("nearvalue", "all", "window"), ppm.value = 0,
direction = "left", shiftHandling = c("zerofilling", "cut",
"NAfilling", "circular"), c = 2, pc = 0.02, fromto.RC = NULL,
ppm.ir = TRUE, rowindex_graph = NULL, verbose = FALSE) {
# Data initialisation and checks ----------------------------------------------
checkArg(verbose, c("bool"))
begin_info <- beginTreatment("InternalReferencing", Spectrum_data, Fid_info,verbose = verbose)
Spectrum_data <- begin_info[["Signal_data"]]
Fid_info <- begin_info[["Signal_info"]]
######## Check input arguments
range <- match.arg(range)
shiftHandling <- match.arg(shiftHandling)
method <- match.arg(method)
plots <- NULL
checkArg(ppm.ir, c("bool"))
checkArg(unlist(fromto.RC), c("num"), can.be.null = TRUE)
checkArg(pc, c("num"))
checkArg(ppm.value, c("num"))
checkArg(rowindex_graph, "num", can.be.null = TRUE)
# fromto.RC : if range == "window",
# fromto.RC defines the spectral window where to search for the peak
if (!is.null(fromto.RC)) {
diff <- diff(unlist(fromto.RC))[1:length(diff(unlist(fromto.RC)))%%2 !=0]
for (i in 1:length(diff)) {
if (diff[i] >= 0) {
fromto <- c(fromto.RC[[i]][2], fromto.RC[[i]][1])
fromto.RC[[i]] <- fromto
}
}
}
# findTMSPpeak function ----------------------------------------------
# If method == "tresh", findTMSPpeak will find the position of the first
# peak (from left or right) which is higher than a predefined threshold
# and is computed as: c*(cumulated_mean/cumulated_sd)
findTMSPpeak <- function(ft, c = 2, direction = "left") {
ft <- Re(ft) # extraction de la partie réelle
N <- length(ft)
if (direction == "left") {
newindex <- rev(1:N)
ft <- rev(ft)
}
thres <- 99999
i <- 1000 # Start at point 1000 to find the peak
vect <- ft[1:i]
while (vect[i] <= (c * thres)) {
cumsd <- stats::sd(vect)
cummean <- mean(vect)
thres <- cummean + 3 * cumsd
i <- i + 1
vect <- ft[1:i]
}
if (direction == "left") {
v <- newindex[i]
} else {v <- i}
if (is.na(v)) {
warning("No peak found, need to lower the threshold.")
return(NA)
} else {
# recherche dans les 1% de points suivants du max trouve pour etre au sommet du
# pic
d <- which.max(ft[v:(v + N * 0.01)])
new.peak <- v + d - 1 # nouveau pic du TMSP si d > 0
if (names(which.max(ft[v:(v + N * 0.01)])) != names(which.max(ft[v:(v + N * 0.03)]))) {
# recherche dans les 3% de points suivants du max trouve pour eviter un faux
# positif
warning("the TMSP peak might be located further away, increase the threshold to check.")
}
return(new.peak)
}
}
# Define the search zone ----------------------------------------
n <- nrow(Spectrum_data)
m <- ncol(Spectrum_data)
# The Sweep Width (SW) has to be the same since the column names are the same
SW <- Fid_info[1, "SW"] # Sweep Width in ppm
ppmInterval <- SW/(m-1) # size of a ppm interval
# range: How the search zone is defined ("all", "nearvalue" or "window")
if (range == "all") {
Data <- Spectrum_data
} else { # range = "nearvalue" or "window"
# Need to define colindex (column indexes) to apply indexInterval on it
if (range == "nearvalue") {
fromto.RC <- list(c(-(SW * pc)/2 + ppm.value, (SW * pc)/2 + ppm.value)) # automatic fromto values in ppm
colindex <- as.numeric(colnames(Spectrum_data))
} else {
# range == "window"
# fromto.RC is already user-defined
if (ppm.ir == TRUE) {
colindex <- as.numeric(colnames(Spectrum_data))
} else {
colindex <- 1:m
}
}
# index intervals taking into account the different elements in the list fromto.RC
Int <- vector("list", length(fromto.RC))
for (i in 1:length(fromto.RC)) {
Int[[i]] <- indexInterval(colindex, from = fromto.RC[[i]][1],
to = fromto.RC[[i]][2], inclusive = TRUE)
}
# define Data as the cropped spectrum including the index intervals
# outside the research zone, the intensities are set to the minimal
# intensity of the research zone
if (n > 1){
Data <- apply(Re(Spectrum_data[,unlist(Int)]),1, function(x) rep(min(x), m))
Data <- t(Data)
Data[,unlist(Int)] <- Re(Spectrum_data[,unlist(Int)])
} else {
Data <- rep(min(Re(Spectrum_data)) ,m)
Data <- as.matrix(Data)
Data <- t(Data)
Data[, unlist(Int)] <- Re(Spectrum_data[,unlist(Int)])
}
}
# Apply the peak location search method ('thres' or 'max') on spectra
# -----------------------------------------------------------------------
if (method == "thres") {
TMSPpeaks <- apply(Data, 1, findTMSPpeak, c = c, direction = direction)
} else { # method == "max
TMSPpeaks <- apply(Re(Data), 1, which.max)
}
# Shift spectra according to the TMSPpeaks found --------------------------------
# Depends on the shiftHandling
# TMSPpeaks is a column index
maxpeak <- max(TMSPpeaks) # max accross spectra
minpeak <- min(TMSPpeaks) # min accross spectra
if (shiftHandling %in% c("zerofilling", "NAfilling", "cut")) {
fill <- NA
if (shiftHandling == "zerofilling") {
fill <- 0
}
start <- maxpeak - 1
end <- minpeak - m
# ppm values of each interval for the whole spectral range of the spectral matrix
ppmScale <- (start:end) * ppmInterval
# check if ppm.value is in the ppmScale interval
if(ppm.value < min(ppmScale) | ppm.value > max(ppmScale)) {
warning("ppm.value = ", ppm.value, " is not in the ppm interval [",
round(min(ppmScale),2), ",", round(max(ppmScale),2), "], and is set to its default ppm.value 0")
ppm.value = 0
}
# if ppm.value != 0, ppmScale is adapted
ppmScale <- ppmScale + ppm.value
# create the spectral matrix with realigned spectra
Spectrum_data_calib <- matrix(fill, nrow = n, ncol = -(end - start) + 1,
dimnames = list(rownames(Spectrum_data), ppmScale))
# fills in Spectrum_data_calib with shifted spectra
for (i in 1:n) {
shift <- (1 - TMSPpeaks[i]) + start
Spectrum_data_calib[i, (1 + shift):(m + shift)] <- Spectrum_data[i, ]
}
if (shiftHandling == "cut") {
Spectrum_data_calib = as.matrix(stats::na.omit(t(Spectrum_data_calib)))
Spectrum_data_calib = t(Spectrum_data_calib)
base::attr(Spectrum_data_calib, "na.action") <- NULL
}
} else {
# circular
start <- 1 - maxpeak
end <- m - maxpeak
ppmScale <- (start:end) * ppmInterval
# check if ppm.value in is the ppmScale interval
if(ppm.value < min(ppmScale) | ppm.value > max(ppmScale)) {
warning("ppm.value = ", ppm.value, " is not in the ppm interval [",
round(min(ppmScale),2), ",", round(max(ppmScale),2), "], and is set to its default ppm.value 0")
ppm.value = 0
}
# if ppm.value != 0, ppmScale is adapted
ppmScale <- ppmScale + ppm.value
# create the spectral matrix with realigned spectra
Spectrum_data_calib <- matrix(nrow=n, ncol=end-start+1,
dimnames=list(rownames(Spectrum_data), ppmScale))
# fills in Spectrum_data_calib with shifted spectra
for (i in 1:n) {
shift <- (maxpeak-TMSPpeaks[i])
Spectrum_data_calib[i,(1+shift):m] <- Spectrum_data[i,1:(m-shift)]
if (shift > 0) {
Spectrum_data_calib[i,1:shift] <- Spectrum_data[i,(m-shift+1):m]
}
}
}
# Plot of the spectra (depending on rowindex_graph) ---------------------------------------------------
ppm = xstart = value = xend = Legend = NULL # only for R CMD check
# with the search zone for TMSP and the location of the peaks just found
if (!is.null(rowindex_graph)) {
if (range == "window") {
if (ppm.ir == TRUE) {
fromto <- fromto.RC
} else {
fromto <- list()
idcol <- as.numeric(colnames(Spectrum_data))
for (i in 1:length(fromto.RC)) {
fromto[[i]] <- as.numeric(colnames(Spectrum_data))[fromto.RC[[i]]]
}
}
} else {
fromto <- fromto.RC
}
# TMSPloc in ppm
TMSPloc <- as.numeric(colnames(Spectrum_data))[TMSPpeaks[rowindex_graph]]
# num plot per window
num.stacked <- min(6, length(rowindex_graph))
# rectanglar bands of color for the search zone
rects <- data.frame(xstart = sapply(fromto, function(x) x[[1]]),
xend = sapply(fromto, function(x) x[[2]]),
Legend = "Peak search zone and location")
# vlines for TMSP peak
addlines <- data.frame(rowname = rownames(Spectrum_data)[rowindex_graph],TMSPloc)
nn <- length(rowindex_graph)
i <- 1
j <- 1
plots <- vector(mode = "list", length = ceiling(nn/num.stacked))
Data <- Spectrum_data[rowindex_graph,,drop = FALSE]
while (i <= nn) {
last <- min(i + num.stacked - 1, nn)
melted <- reshape2::melt(Re(Data[i:last, ,drop = FALSE]),
varnames = c("rowname", "ppm"))
plots[[j]] <- ggplot2::ggplot() + ggplot2::theme_bw() +
ggplot2::geom_line(data = melted,
ggplot2::aes(x = ppm, y = value)) +
ggplot2::geom_rect(data = rects, ggplot2::aes(xmin = xstart, xmax = xend,
ymin = -Inf, ymax = Inf, fill = Legend), alpha = 0.4) +
ggplot2::facet_grid(rowname ~ ., scales = "free_y") +
ggplot2::theme(legend.position = "none") +
ggplot2::geom_vline(data = addlines, ggplot2::aes(xintercept = TMSPloc),
color = "red", show.legend = TRUE) +
ggplot2::ggtitle("Peak search zone and location") +
ggplot2::theme(legend.position = "top", legend.text = ggplot2::element_text())
if ((melted[1, "ppm"] - melted[(dim(melted)[1]), "ppm"]) > 0) {
plots[[j]] <- plots[[j]] + ggplot2::scale_x_reverse()
}
i <- last + 1
j <- j + 1
}
plots
}
# Return the results ----------------------------------------------
Spectrum_data <- endTreatment("InternalReferencing", begin_info, Spectrum_data_calib,
verbose = verbose)
if (is.null(plots)) {
return(Spectrum_data)
} else {
return(list(Spectrum_data = Spectrum_data, plots = plots))
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.