PharmacoSet-class: A Class to Contain PharmacoGenomic datasets together with...

Description Usage Arguments Value Methods (by generic) Slots Examples

Description

The PharmacoSet (pSet) class was developed to contain and organise large PharmacoGenomic datasets, and aid in their metanalysis. It was designed primarily to allow bioinformaticians and biologists to work with data at the level of genes, drugs and cell lines, providing a more naturally intuitive interface and simplifying analyses between several datasets. As such, it was designed to be flexible enough to hold datasets of two different natures while providing a common interface. The class can accomidate datasets containing both drug dose response data, as well as datasets contaning genetic profiles of cell lines pre and post treatement with compounds, known respecitively as sensitivity and perturbation datasets.

Return cell line metadata from a object

Get the names of all cell-lines available in a 'PharmacoSet' object

Update the names of cell lines available in a 'PharmacoSet' object

Get the data that a 'PharmacoSet' object was updated

A generic for the sensNumber method

Retrieve information from the

Retrieve information from the

Get the names of all drugs available in a specified 'PharmacoSet' object

Set the drug names available in a PharmacoSet object

Return the feature names for the specified molecular data type

Get the molecular profile data for the specified molecular data type

Update the molecular profile data for the specified datatype in the specified pSet object

Returns the molecular data names for the 'PharmacoSet' object

Get the molecular profile data for the specified molecular data type

Update the molecular profile data for the specified datatype in the specified pSet object

Return the name of the PharmacoSet object

Return the name of the 'PharmacoSet' object

Get the perturbation number for a specified 'PharmcoSet' object

Set the perturbation number for a specified 'PharmacoSet' object

Get the phenotype information for a specified molecular datatype

Update the phenotype information for a specified molecular data type in a specified pSet object

Get the sensitivity numbers for a 'PharmacoSet' object

Get the senstivity information DataFrame from a PharmacoSet object

Set the sensitivityInfo DataFrame in a PharmacoSet object

Get the types of sensitivity measurements from a object object

Get the types of sensitivity measurements available in a PharmacoSet object

Get the sensitivityProfiles data.frame from a PharmacoSet object

Usage

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
## S4 method for signature 'PharmacoSet'
cellInfo(object)

## S4 method for signature 'PharmacoSet'
cellNames(object)

## S4 replacement method for signature 'PharmacoSet,character'
cellNames(object) <- value

## S4 method for signature 'PharmacoSet'
dateCreated(object)

## S4 replacement method for signature 'PharmacoSet,matrix'
sensNumber(object) <- value

## S4 method for signature 'PharmacoSet'
drugInfo(object)

## S4 replacement method for signature 'PharmacoSet,data.frame'
drugInfo(object) <- value

## S4 method for signature 'PharmacoSet'
drugNames(object)

## S4 replacement method for signature 'PharmacoSet,character'
drugNames(object) <- value

## S4 method for signature 'PharmacoSet,character'
fNames(object, mDataType)

## S4 method for signature 'PharmacoSet'
featureInfo(object, mDataType)

## S4 replacement method for signature 'PharmacoSet,character,DataFrame'
featureInfo(object, mDataType) <- value

## S4 method for signature 'PharmacoSet'
mDataNames(object)

## S4 method for signature 'PharmacoSet'
molecularProfiles(object, mDataType, assay)

## S4 replacement method for signature 'PharmacoSet,character,character,matrix'
molecularProfiles(object, mDataType, assay) <- value

## S4 replacement method for signature 'PharmacoSet,character,missing,matrix'
molecularProfiles(object, mDataType, assay) <- value

## S4 method for signature 'PharmacoSet'
molecularProfilesSlot(object)

## S4 replacement method for signature 'PharmacoSet,list'
molecularProfilesSlot(object) <- value

## S4 method for signature 'PharmacoSet'
name(object)

## S4 replacement method for signature 'PharmacoSet,character'
name(object) <- value

## S4 method for signature 'PharmacoSet'
pertNumber(object)

## S4 replacement method for signature 'PharmacoSet,array'
pertNumber(object) <- value

## S4 method for signature 'PharmacoSet'
phenoInfo(object, mDataType)

## S4 replacement method for signature 'PharmacoSet,character,DataFrame'
phenoInfo(object, mDataType) <- value

## S4 method for signature 'PharmacoSet'
sensNumber(object)

## S4 method for signature 'PharmacoSet'
sensitivityInfo(object, dimension, ...)

## S4 replacement method for signature 'PharmacoSet,data.frame'
sensitivityInfo(object, dimension, ...) <- value

## S4 method for signature 'PharmacoSet'
sensitivityMeasures(object)

## S4 replacement method for signature 'PharmacoSet,character'
sensitivityMeasures(object) <- value

## S4 method for signature 'PharmacoSet'
sensitivityProfiles(object)

## S4 replacement method for signature 'PharmacoSet,data.frame'
sensitivityProfiles(object) <- value

## S4 replacement method for signature 'PharmacoSet,matrix'
sensitivityProfiles(object) <- value

## S4 method for signature 'PharmacoSet'
sensitivityRaw(object)

## S4 replacement method for signature 'PharmacoSet,array'
sensitivityRaw(object) <- value

## S4 method for signature 'PharmacoSet'
sensitivitySlot(object)

## S4 replacement method for signature 'PharmacoSet,list'
sensitivitySlot(object) <- value

Arguments

object

A PharmacoSet to extract the raw sensitivity data from

value

A list of new sensitivity slot data for the pSet

mDataType

the type of molecular data

assay

['character'] Name or index of the assay data to return

dimension

['character'] Optional name of the dimension to extract, either 'cells' or 'drugs'. Only used if the sensitivity slot contains a 'LongTable' object instead of a 'list'.

...

Additional arguments to the rowData or colData 'LongTable' methods. Only used if the sensitivity slot contains a 'LongTable' object instead of a 'list'.

Value

An object of the PharmacoSet class

a data.frame with the cell annotations

A vector of the cell names used in the PharmacoSet

Updated ['PharmacoSet']

['character'] The date the 'PharmacoSet' was created

The updated PharmacoSet

A ['data.frame'] containg annotatations for all drugs in the object

A ['PharmacoSet'] with updated drug annotations in the '@drug' slot

A ['character'] vector containg the names of drugs in the pSet

The updated ['PharmacoSet'] object

A ['character'] vector of the feature names

A ['data.frame'] with the feature annotations for the specified 'mDataType'

Updated PharmacoSet

Vector of names of the molecular data types

a ['matrix'] of data for the given mDataType and assay

Updated ['PharmacoSet']

A ['list'] of 'SummarizedExperiment' objects, named by molecular data type

['character'] The name of the 'PharmacoSet'

The name of the PharmacoSet

A 3D ['array'] with the number of perturbation experiments per drug and cell line, and data type

The updated ['PharmacoSet']

a ['data.frame'] with the phenotype information for the specified molecular data type

The updated PharmacoSet

A data.frame with the number of sensitivity experiments per drug and cell line

a ['DataFrame'] with the experiment info

Updated PharmacoSet

A ['character'] vector of all the available sensitivity measures

A ['character'] vector of all the available sensitivity measures

a data.frame with the experiment info

['invisible'] Updates the 'PharmacoSet' object.

['invisible'] Updates the 'PharmacoSet' object.

A array containing the raw sensitivity data

A copy of the PharmacoSet containing the updated sensitivty data

A list of the sensitivity slot contents

A copy of the PharmacoSet containing the updated sensitivty slot

Methods (by generic)

Slots

annotation

A list of annotation data about the PharmacoSet, including the $name and the session information for how the object was creating, detailing the exact versions of R and all the packages used

molecularProfiles

A list containing SummarizedExperiment type object for holding data for RNA, DNA, SNP and CNV measurements, with associated fData and pData containing the row and column metadata

cell

A data.frame containing the annotations for all the cell lines profiled in the data set, across all data types

drug

A data.frame containg the annotations for all the drugs profiled in the data set, across all data types

sensitivity

A list containing all the data for the sensitivity experiments, including $info, a data.frame containing the experimental info,$raw a 3D array containing raw data, $profiles, a data.frame containing sensitivity profiles statistics, and $n, a data.frame detailing the number of experiments for each cell-drug pair

perturbation

A list containting $n, a data.frame summarizing the available perturbation data,

curation

A list containing mappings for $drug, cell, tissue names used in the data set to universal identifiers used between different PharmacoSet objects

datasetType

A character string of 'sensitivity', 'perturbation', or both detailing what type of data can be found in the PharmacoSet, for proper processing of the data

Examples

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
data(CCLEsmall)
cellInf <- cellInfo(CCLEsmall)

data(CCLEsmall)
cellNames(CCLEsmall)

data(CCLEsmall)
cellNames(CCLEsmall) <- cellNames(CCLEsmall)

data(CCLEsmall)
dateCreated(CCLEsmall)

data(CCLEsmall)
sensNumber(CCLEsmall) <- sensNumber(CCLEsmall)

data(CCLEsmall)
drugInf <- drugInfo(CCLEsmall)

data(CCLEsmall)
drugInf <- drugInfo(CCLEsmall)

data(CCLEsmall)
drugNames(CCLEsmall)

data(CCLEsmall)
drugNames(CCLEsmall) <- drugNames(CCLEsmall)

data(CCLEsmall)
fNames(CCLEsmall, "rna")

data(CCLEsmall)
featInf <- featureInfo(CCLEsmall, "rna")

data(CCLEsmall)
featureInfo(CCLEsmall, "rna") <- featureInfo(CCLEsmall, "rna")

data(CCLEsmall)
mDataNames(CCLEsmall)

data(CCLEsmall)
molProf <- molecularProfiles(CCLEsmall, "rna")

data(CCLEsmall)
molecularProfiles(CCLEsmall, "rna") <- molecularProfiles(CCLEsmall, "rna")

data(CCLEsmall)
molProfSlot <- molecularProfilesSlot(CCLEsmall)

data(CCLEsmall)
molecularProfilesSlot(CCLEsmall) <- molecularProfilesSlot(CCLEsmall)

data(CCLEsmall)
name(CCLEsmall)

data(CCLEsmall)
name(CCLEsmall) <- 'CCLEsmall'

data(CCLEsmall)
pertNumber(CCLEsmall)

data(CCLEsmall)
pertNumber(CCLEsmall) <- pertNumber(CCLEsmall)

data(CCLEsmall)
phenoInf <- phenoInfo(CCLEsmall, mDataType="rna")

data(CCLEsmall)
phenoInfo(CCLEsmall, mDataType='rna') <- phenoInfo(CCLEsmall, mDataType='rna')

data(CCLEsmall)
sensNumber(CCLEsmall)

data(CCLEsmall)
sensInf <- sensitivityInfo(CCLEsmall)

data(CCLEsmall)
sensitivityInfo(CCLEsmall) <- sensitivityInfo(CCLEsmall)

data(CCLEsmall)
sensMeas <- sensitivityMeasures(CCLEsmall)

data(CCLEsmall)
sensMeas <- sensitivityMeasures(CCLEsmall)

data(CCLEsmall)
sensProf <- sensitivityProfiles(CCLEsmall)

data(GDSCsmall)
sensitivityProfiles(GDSCsmall) <- sensitivityProfiles(GDSCsmall)

data(GDSCsmall)
sensitivityProfiles(GDSCsmall) <- sensitivityProfiles(GDSCsmall)

data(CCLEsmall)
sensitivityRaw(CCLEsmall)

data(CCLEsmall)
sensitivityRaw(CCLEsmall) <- sensitivityRaw(CCLEsmall)

data(CCLEsmall)
sensitivitySlot(CCLEsmall)

data(CCLEsmall)
sensitivitySlot(CCLEsmall) <- sensitivitySlot(CCLEsmall)

PharmacoGx documentation built on Feb. 28, 2021, 2 a.m.