Nothing
#' @title Groom methylation data to fix potential data issues
#'
#' @description
#' \code{grooMethy} is used to automatically detect and fix data issues including zero beta
#' value, missing value, and infinite value.
#'
#' @param methyDat A \code{\link{RatioSet}}, \code{\link{GenomicRatioSet}}, \code{\link{DataFrame}},
#' \code{data.table}, \code{data.frame}, or \code{matrix} of Illumina BeadChip methylation data
#' (450k or EPIC array) or Illumina methylation percentage estimates by sequencing. If the data are prepared
#' as a \code{data.frame} or alike format, for Illumina array data, please make sure there is a column or row names
#' are available to indicate the Illumina probe names (i.e. cg00000029); for sequencing methylation data, please provide
#' the corresponding CpG location information in \code{Seq.GR}.
#' @param Seq.GR A \code{\link{GRanges}} object containing genomic locations of the CpGs profiled by sequencing
#' platforms. This parameter should not be \code{NULL} if the input methylation data \code{methyDat} are
#' obtained by sequencing platform. The order of \code{Seq.GR} should match the order of \code{methyDat}.
#' Note that the genomic location can be in either hg19 or hg38 build. See details.
#' @param impute If \code{TRUE}, K-Nearest Neighbouring imputation will be applied to fill
#' the missing values. Default = \code{TRUE}. See Details.
#' @param imputebyrow If \code{TRUE}, missing values will be imputed using similar values in row
#' (i.e., across samples); if \code{FALSE}, missing values will be imputed using similar values
#' in column (i.e., across CpGs). Default is \code{TRUE}.
#' @param mapGenome Logical parameter. If \code{TRUE}, function will return a \code{\link{GenomicRatioSet}}
#' object instead of a \code{\link{RatioSet}}. This function is not applicable for sequencing data.
#' @param verbose Logical parameter. Should the function be verbose?
#'
#' @details
#' For methylation data in beta value, if zero/one value exists, the logit transformation
#' from beta to M value will produce infinite value. Therefore, zero/one beta value
#' will be replaced with the smallest non-zero beta/largest non-one beta value found in the dataset.
#' \code{grooMethy} can also handle missing value (i.e. \code{NA} or \code{NaN}) using KNN imputation (see
#' \code{\link{impute.knn}}). The infinite value will be also treated as missing value for imputation.
#' If the original dataset is in beta value, \code{grooMethy} will first transform it to M value
#' before imputation is carried out. If the imputed value is out of the original range (which is possible when
#' \code{imputebyrow = FALSE}), mean value will be used instead. Warning: imputed
#' values for multimodal distributed CpGs (across samples) may not be correct. Please check package \code{ENmix} to
#' identify the CpGs with multimodal distribution. Please note that \code{grooMethy} is
#' also embedded in \code{\link{remp}} so the user can run \code{\link{remp}} directly without
#' explicitly running \code{grooMethy}. For sequencing methylation data, please specify the genomic location of CpGs
#' in a \code{GenomicRanges} object and specify it in \code{Seq.GR}. For an example of \code{Seq.GR}, Please
#' run \code{minfi::getLocations(IlluminaHumanMethylation450kanno.ilmn12.hg19)} (the row names of the CpGs in \code{Seq.GR}
#' can be \code{NULL}). The user should make sure the genome build of \code{Seq.GR} match the build specified
#' in \code{genome} parameter of function \code{\link{initREMP}} and \code{\link{remprofile}} (default is \code{"hg19"}).
#'
#' @return A \code{\link{RatioSet}} or \code{\link{GenomicRatioSet}} containing beta value and
#' M value of the methylation data.
#'
#' @examples
#' # Get GM12878 methylation data (450k array)
#' if (!exists("GM12878_450k")) GM12878_450k <- getGM12878("450k")
#' GM12878_450k <- grooMethy(GM12878_450k, verbose = TRUE)
#'
#' # Also works if data input is a matrix
#' grooMethy(minfi::getBeta(GM12878_450k), verbose = TRUE)
#' @export
grooMethy <- function(methyDat,
Seq.GR = NULL,
impute = TRUE,
imputebyrow = TRUE,
mapGenome = FALSE,
verbose = FALSE) {
currenT <- Sys.time()
if (is.null(methyDat)) stop("Methylation dataset (methyDat) is missing.")
if (!is.null(Seq.GR)) {
.isGROrStop(Seq.GR)
names(Seq.GR) <- NULL
}
methyDat_work <- methyDat
if (is(methyDat_work, "RatioSet") || is(methyDat_work, "GenomicRatioSet")) {
if(minfi::preprocessMethod(methyDat_work) == "grooMethy(REMP)") {
if (verbose) message("Methylation data are already groomed.")
return(methyDat_work)
}
methyDat_work <- minfi::getBeta(methyDat_work)
}
methyDat_work <- .methyMatrix(methyDat_work, Seq.GR)
type <- .guessDataType(methyDat_work)
arrayType <- .guessArrayType(methyDat_work)
if (arrayType == "27k") {
stop("Illumina 27k array is not supported.")
}
if (arrayType == "450k") {
annotationInfo <- c(array = "IlluminaHumanMethylation450k", annotation = remp_options(".default.450k.annotation"))
}
if (arrayType == "EPIC") {
annotationInfo <- c(array = "IlluminaHumanMethylationEPIC", annotation = remp_options(".default.epic.annotation"))
}
if (arrayType == "Sequencing" | !is.null(Seq.GR)) {
annotationInfo <- c(array = "IlluminaHumanMethylationSequencing", annotation = "Custom")
}
if (verbose) {
message(
"Illumina ", arrayType, " Methylation data in ", type,
" value detected."
)
}
if (type == "percentage") {
methyDat_work <- methyDat_work / 100
if (verbose) message("Percentage data have been divided by 100 and scaled to range 0-1.")
}
dc <- .dataCheck(methyDat_work, type)
if (is.null(dc$code)) {
if (verbose) {
message(" No issue found in the methylation dataset.")
}
impute <- FALSE
} else {
## If beta and any beta value is out of range
if (1 %in% dc$code) {
stop("Negative beta or beta > 1 values detected! Please check your data and data preprocessing.")
}
## If any beta value = 0 or 1 is found
if (2 %in% dc$code) {
nzero <- sum(methyDat_work == 0, na.rm = TRUE)
none <- sum(methyDat_work == 1, na.rm = TRUE)
if (nzero > 0) {
if (verbose) message(" A total of ", nzero, " zero beta values are found.")
smallBeta <- min(methyDat_work[methyDat_work > 0], na.rm = TRUE)
if (verbose) message(" Fixing 'zero' beta values with the smallest non-0 beta value = ", smallBeta, " ...")
methyDat_work[methyDat_work == 0] <- smallBeta
}
if (none > 0) {
if (verbose) message(" A total of ", none, " one beta values are found.")
bigBeta <- max(methyDat_work[methyDat_work < 1], na.rm = TRUE)
if (verbose) message(" Fixing 'one' beta values with the largest non-1 beta value = ", bigBeta, " ...")
methyDat_work[methyDat_work == 1] <- bigBeta
}
}
## If any beta/M value is NaN or infinite
if (any(c(3, 4, 5) %in% dc$code)) {
methyDat_work[is.nan(methyDat_work)] <- NA
methyDat_work[is.infinite(methyDat_work)] <- NA
if (verbose) {
message(" A total of ", sum(is.na(methyDat_work)), " NA/NaN/Inf values are found.")
}
} else {
impute <- FALSE
}
}
## Prepare both beta and M value using corrected data
if (type == "M") {
if (verbose) {
message(" Converting M value to beta value ...")
}
betadata <- .toBeta(methyDat_work)
mdata <- methyDat_work
} else {
if (verbose) {
message(" Converting beta/percentage value to M value ...")
}
betadata <- methyDat_work
mdata <- .toM(methyDat_work)
}
## Impute the data!
if (impute) {
if (verbose) {
message(" Imputing missing values using KNN method ...")
}
if (ncol(mdata) == 1) {
stop("KNN-imputation cannot be applied to single sample.")
}
if (imputebyrow) resu <- impute::impute.knn(t(mdata)) else resu <- impute::impute.knn(mdata)
## Error checking and imperfect fix (use mean to replace the
## out-of-range imputation)
rg <- apply(mdata, 1, function(x) range(x, na.rm = TRUE)) # Calculate the range of the data before imputation
if (imputebyrow) imputed_mdata <- t(resu$data) else imputed_mdata <- resu$data
## Check if any imputed data is out of the original range
idx <- which(imputed_mdata < rg[1, ] | imputed_mdata > rg[2, ],
arr.ind = TRUE
)
## If so then use mean to fix them
if (nrow(idx) > 0) {
if (verbose) {
message(" Fixing ", nrow(idx), " imputed probes that are out of the original data range...")
}
m <- apply(mdata[idx[, 1], ], 1, function(x) mean(x, na.rm = TRUE)) ## calculate the mean of the original data
for (i in seq_len(nrow(idx))) {
imputed_mdata[idx[i, 1], idx[i, 2]] <- m[i]
}
} else {
if (verbose) {
message(" All imputed probes are within the original data range.")
}
}
## Update with imputed data
mdata <- imputed_mdata
betadata <- .toBeta(mdata)
}
rset <- minfi::RatioSet(Beta = betadata, M = mdata,
annotation = annotationInfo,
preprocessMethod = "grooMethy(REMP)")
if (arrayType != "Sequencing" & mapGenome) {
rset <- minfi::mapToGenome(rset)
}
if (verbose) message("Methylation data grooming is completed.", .timeTrace(currenT)$t_text)
return(rset)
} ## End of grooMethy
## Internal functions
.methyMatrix <- function(methyDat, Seq.GR = NULL) {
methyDat <- data.frame(methyDat, check.names = FALSE)
probeNameIndicator <- which(vapply(methyDat, class, character(1)) %in% c("factor", "character"))
if (!is.null(Seq.GR)) {
if (length(probeNameIndicator) > 0)
stop("Factor or Character columns detected! The input methylation data from sequencing platform should all be numeric.")
if (nrow(methyDat) != length(Seq.GR))
stop("The number of rows in methylation data (", nrow(methyDat), ") does not match the length of Seq.GR provided (", length(Seq.GR), ").")
methyDat.matrix <- as.matrix(methyDat)
rownames(methyDat.matrix) <- paste0(seqnames(Seq.GR), ":", start(Seq.GR))
} else {
if (length(probeNameIndicator) > 1) {
stop(paste(
"For array methylation data, please only keep one column or just use row names to indicate Illumina probe names (i.e. cg00000029).",
"For sequencing methylation data, the parameter Seq.GR cannot be missing. Please provide it."
))
}
containILMN <- "cg" %in% unique(substring(methyDat[seq_len(10), probeNameIndicator], 1, 2))
containRownames <- "cg" %in% unique(substring(rownames(methyDat)[seq_len(10)], 1, 2))
if (!containILMN & !containRownames) {
stop(paste(
"For array methylation data, a column or row names that indicates Illumina probe names (i.e. cg00000029) is missing.",
"Please fix it. For sequencing methylation data, the parameter Seq.GR cannot be missing. Please provide it."
))
}
if (containILMN) {
methyDat.matrix <- as.matrix(methyDat[, -probeNameIndicator],
ncol = ncol(methyDat) - 1
)
rownames(methyDat.matrix) <- methyDat[, probeNameIndicator]
colnames(methyDat.matrix) <- colnames(methyDat)[-probeNameIndicator]
} else if (containRownames) {
methyDat.matrix <- as.matrix(methyDat)
}
}
return(methyDat.matrix)
}
.dataCheck <- function(methyDat, type) {
errorString <- NULL
code <- NULL
if (type %in% c("[Genomic]RatioSet", "beta", "percentage") & any(methyDat < 0 | methyDat >
1, na.rm = TRUE)) {
errorString <- c(errorString, "out-of-range")
code <- c(code, 1)
}
if (type %in% c("[Genomic]RatioSet", "beta", "percentage") & any(methyDat == 0 | methyDat == 1, na.rm = TRUE)) {
errorString <- c(errorString, "0/1")
code <- c(code, 2)
}
if (any(is.nan(methyDat))) {
errorString <- c(errorString, "NaN")
code <- c(code, 3)
}
if (any(is.na(methyDat))) {
errorString <- c(errorString, "NA")
code <- c(code, 4)
}
if (any(is.infinite(methyDat))) {
errorString <- c(errorString, "Inf")
code <- c(code, 5)
}
return(list(code = code, errorString = errorString))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.