R/readsamples.R

Defines functions HRF_EUC Fu ubar readsamples

Documented in readsamples

#' Import of tables prepared by Galaxy workflow to R environment
#'
#' Function readsamples() reads the output of read processing and mapping
#' workflow which has to consist of 4 columns 1) RNAid, 2)Insert start,
#' 3)Insert end, 4)Unique barcode count. It combines separate files coming from
#' the same treatment (e.g. controls) and calculates estimated
#' unique counts (EUCs) by either (a) keeping unique counts (euc="counts"), (b)
#' using formula from Fu GK et al. PNAS 2011 (binomial distribution
#' calculation) (euc="Fu") or (c) using method described in Kielpinski and
#' Vinther, NAR 2014 (euc="HRF-Seq") If euc="Fu" then the count of all possible
#' barcodes is required (m), e.g. if you use 7 nucleotide, fully degenerate
#' random barcodes (NNNNNNN) then m=16384 (m=4**7) If euc="HRF-Seq" then the
#' path to a precomputed k2n file is required (generate using k2n_calc()
#' function)(default: "counts")
#'
#'
#' @param samples vector with paths to unique_barcodes files to be combined
#' @param euc method of calculating estimated unique counts (default: "counts")
#' @param m random barcode complexity (required if and only if euc="Fu")
#' @param k2n_files vector with paths to k2n files corresponding to files given
#' in samples (required if and only if euc="HRF-Seq"; order important!).
#' Recycled if necessary
#' @return euc_GR GRanges containing information: 1) seqnames (sequence name;
#' RNAid) 2) Start, 3) End, 4) EUC value of a given fragment
#' @author Lukasz Jan Kielpinski, Nikos Sidiropoulos
#' @seealso \code{\link{comp}}, \code{\link{plotReads}}, \code{\link{k2n_calc}}
#' @references Fu, G.K., Hu, J., Wang, P.H., and Fodor, S.P. (2011). Counting
#' individual DNA molecules by the stochastic attachment of diverse labels.
#' Proc Natl Acad Sci U S A 108, 9026-9031.
#' Kielpinski, L.J., and Vinther, J. (2014).
#' Massive parallel-sequencing-based hydroxyl radical probing of RNA
#' accessibility. Nucleic Acids Res.
#' @examples
#'
#' write("DummyRNA\t1\t2\t3",file="dummy_unique_barcode")
#' readsamples(samples = "dummy_unique_barcode", euc = "counts")
#'
#' @import GenomicRanges
#' @importFrom IRanges IRanges
#' @importFrom utils read.table
#' @export readsamples
readsamples <- function(samples, euc="counts", m="", k2n_files=""){

    ###Check conditions:
    if (is.element("TRUE", !file.exists(samples)))
        stop("Input file not found.")

    if(euc=="Fu" & (is.na(as.integer(m)) | length(m)!=1))
        stop("wrong m")

    raw_data <- lapply(samples, read.table)

    ncols <- sapply(raw_data, ncol)
    if (is.element("TRUE", ncols != 4)){
        stop("All input files should contain exactly 4 columns")
    }

    if(euc=="HRF-Seq")
        k2n_values <- lapply(k2n_files, scan, quiet=TRUE)

    ###Function body:

    #Run proper function depending on euc setting:
    processed_data <- switch(which(euc==c("counts","Fu","HRF-Seq")),
                             .ubar(raw_data), .Fu(raw_data, m),
                             .HRF_EUC(raw_data, k2n_values))

    colnames(processed_data) <- c("RNAid", "Start", "End",
                                  "Count")

    #Lines without end position info - make it equal to start position:
    no_end_info <- is.na(processed_data$End)
    processed_data$End[no_end_info] <- processed_data$Start[no_end_info]

    #Modify into GRanges:
    processed_data <- GRanges(seqnames=processed_data$RNAid,
                              IRanges(start=processed_data$Start,
                                      end=processed_data$End),
                              strand="+", EUC=processed_data$Count)

    if(is.element(Inf, processed_data$EUC)) {
        Message <- "Barcodes oversaturated. Inf returned.
                    Running correct_oversaturation() strongly recommended."
        message(strwrap(Message))
    }

    sort(processed_data)
}

###Auxiliary functions

##EUC functions:
#if euc=="counts" - function merging and returning merged data frames,
#if no EUC calculation requested:
.ubar <- function(rdf_list){
    rdf <- do.call("rbind", rdf_list)
    message("Reporting unique barcodes count, no EUC calculation")

    rdf
}

#if euc=="Fu" - Function calculating EUC based on number of observed barcodes
#following the formula: n=log((m-k)/m)/log((m-1)/m) derived from
#k=m*(1-(1-1/m)**n), where k is number of observed barcodes, m - number of all
#possible barcodes, n - estimated unique count (number of underlying, target
#molecules).
#Formula from Fu GK et al. PNAS 2011 (binomial distribution calculation).
#Results rounded to nearest integer.
.Fu <- function(rdf_list, m){
    rdf <- do.call("rbind", rdf_list)
    m <- as.integer(m)

    #Stop if any record has more observed barcodes than possible (m):
    if(max(rdf[,4]) > m) {
        Message <- "provided 'm' is smaller than the highest observed
                    unique barcode count. Revise 'm'"
        stop(strwrap(Message))
    }

    rdf[,4] <- round(log((m - rdf[,4])/m)/log((m - 1)/m))
    message("Reporting estimated unique counts according to Fu et al.")

    rdf
}

#if euc=="HRF-Seq" - Function calculating EUC based on number of observed
#barcodes following method described in Kielpinski and Vinther, NAR 2014
#(similar to Fu et al. but allows for different barcodes to have different
#attachment probability)
.HRF_EUC <- function(rdf_list, k2n_values){
    for(input_count in 1:length(rdf_list)){
        rdf_list[[input_count]][,4] <-
            k2n_values[[((input_count-1)%%length(k2n_values)+1)]][rdf_list[[
                input_count]][,4]]
    }
    rdf <- do.call("rbind", rdf_list)
    message("Reporting estimated unique counts according to HRF-Seq method")

    rdf
}

Try the RNAprobR package in your browser

Any scripts or data that you put into this service are public.

RNAprobR documentation built on May 2, 2018, 6:04 p.m.