getResults-methods: getResults Method to access the result of one-layer and...

Description Arguments Value Methods Author(s) See Also Examples

Description

This method provides an easy interface to access the results of one-layer and two-layers of cross-validation directly from an object assessment.

Arguments

object

Object of class assessment. Object assessment of interest

layer

numeric. Indice that states which layer of cross-validation must be accessed. Set to 1 to acces the one-layer cross-validation, Set to c(1,i) to acces the ith repeat of the one-layer cross-validation, Set to 2 to acces to the two-layers cross-validation, Set to c(2,i) to access the ith repeat of the two-layers cross-validation, Set to c(2,i,j) to access the jth inner layer of ith repeat of the two-layers cross-validation, Set to c(2,i,j,k) to access the kth repeat of the jth inner layer of ith repeat of the two-layers cross-validation

topic

character. Argument that specifies which kind of result is requested, the possible values are "errorRate": Access to cross-validation error rate, standard error on cross-validated error rate, error rate per fold, number of samples per fold and error rate per class, "selectedGenes": Access to the genes selected for each fold or their frequency of selection among the folds and the repeats, "bestOptionValue": For one-layer of cross-validation, access to the best option value (size of gene subset for SVM-RFE or thresholds for NSC) corresponding to the best value of the cross-validated error rate. For the two-layers of cross-validation, access the average best option value (over the repeats and folds). "executionTime": Time used to run the selected layer in seconds.

errorType

character. Optional, ignored if topic is not "errorRate". Specify the type of error rate requested, the possible values are: missing or "all" to access all the following error rates "cv" to access the cross-validated error rate, "se" to access the standard error on the cross validated error rate, "fold" to access the error rate per fold (not available in certain cases see section value for more details), "noSamplesPerFold" to access the number of samples in each fols (not available in certain cases see section value for more details), "class" to acces the error rate per class

genesType

character. Optional, ignored if topic is not "selectedGenes". Specify the type of display of genes selected, the possible values are: missing "fold" to access the genes selected for each fold (not available in certain case see section value for more details), "frequ" to access the genes order by their frequency among the folds(not available in certain case see section value for more details)

Value

if there is no error, the value returned by the method depends on the arguments namely, layer, topic, errorType and genesType.

If layer is 1

General

Get the results of the repeated one-layer cross-validation corresponding to the object of class assessment. If the one-layer cross-validation has not been performed and the user try to access it then the function return an error indicating that he must call runOneLayerExtCV first.

if topic is "errorRate"
If errorType="all" or is missing

All the following error rates

If errorType="cv"

numeric. Cross-validated error-rate for each value of option tried obtained by one-layer of cross-validation (1 value per value of option).

If errorType="se"

numeric. Standard error on cross-validated error-rate for each value of option tried obtained by one-layer of cross-validation (1 value per value of option).

If errorType="class"

numeric. Class cross-validated error rate error for each value of option tried obtained by one-layer of cross-validation (1 value per class and value of option).

Else

Error signaling that the topic is not appropriate.

if topic is "genesSelected"
If genesType="freq" or is missing

list. Each elelement of the list corresponds to the genes selected for each model ordered by frequency.

Else

Error signaling that the topic is not appropriate.

if topic is "bestOptionValue"

Size of subset (for RFE-SVM) or threshold (for NSC) corresponding to the minimum cross-validated error rate.

if topic is "executionTime"

Time in second to perform this one-layer cross-validation.

If layer is c(1,i)

General

Get the results of the ith repeat of the one-layer cross-validation corresponding to the object of class assessment. If the one-layer cross-validation has not been performed and the user try to access it then the function return an error indicating that he must call runOneLayerExtCV first.

if topic is "errorRate"
If errorType="all" or is missing

All the following error rates

If errorType="cv"

numeric. Cross-validated error-rate for each value of option tried obtained by one-layer of cross-validation on the ith repeat(1 value per subset).

If errorType="se"

numeric. Standard error on cross-validated error-rate for each value of option tried obtained by one-layer of cross-validation on the ith repeat (1 value per value of option).

If errorType="class"

numeric. Class cross-validated error rate error for each value of option tried obtained by one-layer of cross-validation on the ith repeat (1 value per class and value of option).

If errorType="fold"

numeric. Class cross-validated error rate error for each fold and each value of option tried obtained by one-layer of cross-validation on the ith repeat (1 value per class and value of option).

Else

Error signaling that the topic is not appropriate.

if topic is "genesSelected"
If genesType="freq" or is missing

list. Each elelement of the list corresponds to the genes selected for each model ordered by frequency.

If genesType="fold"

list. Each elelement of the list corresponds to a model and contains a list of which one element correspond to the genes selected in a particular fold.

Else

Error signaling that the topic is not appropriate.

if topic is "bestOptionValue"

numeric. Size of subset (for RFE) or threshold (for NSC) corresponding to the minimum cross-validated error rate in the ith repeat of the one-layer cross-validation.

if topic is "executionTime"

Time in second to perform this repeat of one-layer cross-validation.

If layer is 2

General

Get the results of the repeated two-layers cross-validation corresponding to the object of class assessment. If the two-layer cross-validation has not been performed and the user try to access it then the function return an error indicating that he must call runTwoLayerExtCV first.

if topic is 'errorRate'
If errorType="all" or is missing

All the following error rates

If errorType="cv"

numeric. Cross-validated error-rate obtained by two-layers of cross-validation (1 value).

If errorType="se"

numeric. Standard error on cross-validated error-rate obtained by two-layers of cross-validation (1 value).

If errorType="class"

numeric. Class cross-validated error rate obtained by two-layers (1 value per class)

Else

Error signaling that the topic is not appropriate.

if topic is "bestOptionValue"

numeric. Average best number of genes for SVM-RFE of threshold for NSc obtained among the folds.

if topic is "executionTime"

Time in second to perform this two-layers cross-validation.

If layer is c(2,i)

General

Get the results of the ith repeated of the two-layers cross-validation corresponding to the object of class assessment. If the two-layer cross-validation has not been performed and the user try to access it then the function return an error indicating that he must call runTwoLayerExtCV first.

if topic is 'errorRate'
If errorType="all" or is missing

All the following error rates

If errorType="cv"

numeric. Cross-validated error-rate obtained by two-layers of cross-validation in this repeat. (1 value).

If errorType="se"

numeric. Standard error on cross-validated error-rate obtained by two-layers of cross-validation in this repeat (1 value).

If errorType="class"

numeric. Class cross-validated error rate obtained by two-layers in this repeat

If errorType="fold"

numeric. Error rate obtained on each of the folds in the second layer in this repeat(1 value per fold). of cross-validation (value per class).

Else

Error signaling that the topic is not appropriate.

if topic is "genesSelected"
If genesType="fold" or is missing

list. Each elelement of the list corresponds to a fold and contains a list of the genes selected in this particular fold.

Else

Error signaling that the topic is not appropriate.

if topic is "bestOptionValue"

numeric. Average best number of genes obtained among the folds in this repeat.

if topic is "executionTime"

Time in second to perform this repeat of two-layers cross-validation.

If layer is c(2,i,j)

This layer corresponds to the jth inner layer of one-layer cross-validation performed inside the ith repeat of the two-layers cross-validation. The returned values are similar to the one returned by a repeated one-layer cross-validation.

If layer is c(2,i,j,k)

This layer corresponds to the kth repeat of the jth inner layer of one-layer cross-validation performed inside the ith repeat. The returned values are similar to the one returned by a repeat of one-layer cross-validation.

Methods

object = "assessment"

The method is only applicable on objects of class assessment.

Author(s)

Camille Maumet

See Also

assessment

Examples

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
#dataPath <- file.path("C:", "Documents and Settings", "c.maumet", "My Documents", "Programmation", "Sources", "SVN", "R package", "data")
#aDataset <- new("dataset", dataId="vantVeer_70", dataPath=dataPath)
#aDataset <- loadData(aDataset)
data('vV70genesDataset')

mySubsets <- new("geneSubsets", optionValues=c(1,2,4,8,16,32,64,70))
myassessment <- new("assessment", dataset=vV70genes,
                                   noFolds1stLayer=5,
                                   noFolds2ndLayer=4,
                                   classifierName="svm",
                                   typeFoldCreation="original",
                                   svmKernel="linear",
                                   noOfRepeat=2,
                                   featureSelectionOptions=mySubsets)

myassessment <- runOneLayerExtCV(myassessment)
myassessment <- runTwoLayerExtCV(myassessment)

# --- Access to one-layer CV ---
# errorRate
# 1-layer CV: error Rates
getResults(myassessment, 1, 'errorRate')
# 1-layer CV: error Rates - all")
getResults(myassessment, 1, 'errorRate', errorType='all')
# 1-layer CV: error Rates - cv
getResults(myassessment, 1, 'errorRate', errorType='cv')
# 1-layer CV: error Rates - se
getResults(myassessment, 1, 'errorRate', errorType='se')
# 1-layer CV: error Rates - class
getResults(myassessment, 1, 'errorRate', errorType='class')

# genesSelected
# 1-layer CV: genes Selected
getResults(myassessment, 1, 'genesSelected')
# 1-layer CV: genes Selected - frequ
getResults(myassessment, 1, 'genesSelected', genesType='frequ')
# 1-layer CV: genes Selected - model 7
getResults(myassessment, 1, 'genesSelected', genesType='frequ')[[7]]
getResults(myassessment, 1, 'genesSelected')[[7]]

# bestOptionValue
# 1-layer CV: best number of genes
getResults(myassessment, 1, 'bestOptionValue')

# executionTime
# 1-layer CV: execution time
getResults(myassessment, 1, 'executionTime')

# --- Access to 2nd repeat of one-layer CV ---
# Error rates
# 1-layer CV repeat 2: error Rates
getResults(myassessment, c(1,2), 'errorRate')
# 1-layer CV repeat 2: error Rates - all
getResults(myassessment, c(1,2), 'errorRate', errorType='all')
# 1-layer CV repeat 2: error Rates - cv
getResults(myassessment, c(1,2), 'errorRate', errorType='cv')
# 1-layer CV repeat 2: error Rates - se
getResults(myassessment, c(1,2), 'errorRate', errorType='se')
# 1-layer CV repeat 2: error Rates - fold
getResults(myassessment, c(1,2), 'errorRate', errorType='fold')
# 1-layer CV repeat 2: error Rates - noSamplesPerFold
getResults(myassessment, c(1,2), 'errorRate', errorType='noSamplesPerFold')
# 1-layer CV repeat 2: error Rates - class
getResults(myassessment, c(1,2), 'errorRate', errorType='class')

# genesSelected
# 1-layer CV repeat 2: genes Selected
getResults(myassessment, c(1,2), 'genesSelected')
# 1-layer CV repeat 2: genes Selected - frequ
getResults(myassessment, c(1,2), 'genesSelected', genesType='frequ')
# 1-layer CV repeat 2: genes Selected - model 7 (twice)
getResults(myassessment, c(1,2), 'genesSelected', genesType='frequ')[[7]]
getResults(myassessment, c(1,2), 'genesSelected')[[7]]
# 1-layer CV repeat 2: genes Selected - fold
getResults(myassessment, c(1,2), 'genesSelected', genesType='fold')

# 1-layer CV repeat 2: best number of genes
getResults(myassessment, c(1,2), 'bestOptionValue')

# 1-layer CV repeat 2: execution time
getResults(myassessment, c(1,2), 'executionTime')

# --- Access to two-layers CV ---
# Error rates
# 2-layer CV: error Rates
getResults(myassessment, 2, 'errorRate')
# 2-layer CV: error Rates - all
getResults(myassessment, 2, 'errorRate', errorType='all')
# 2-layer CV: error Rates - cv
getResults(myassessment, 2, 'errorRate', errorType='cv')
# 2-layer CV: error Rates - se
getResults(myassessment, 2, 'errorRate', errorType='se')
# 2-layer CV: error Rates - class
getResults(myassessment, 2, 'errorRate', errorType='class')

# bestOptionValue
# 2-layer CV: best number of genes (avg)
getResults(myassessment, 2, 'bestOptionValue')

# executionTime
# 2-layer CV: execution time
getResults(myassessment, 2, 'executionTime')

# --- Access to two-layers CV access to repeats ---
# Error rates
# 2-layer CV repeat 1: error Rates
getResults(myassessment, c(2,1), 'errorRate')
# 2-layer CV repeat 1: error Rates - all
getResults(myassessment, c(2,1), 'errorRate', errorType='all')
# 2-layer CV repeat 1: error Rates - cv
getResults(myassessment, c(2,1), 'errorRate', errorType='cv')
# 2-layer CV repeat 1: error Rates - se
getResults(myassessment, c(2,1), 'errorRate', errorType='se')
# 2-layer CV repeat 1: error Rates - fold
getResults(myassessment, c(2,1), 'errorRate', errorType='fold')
# 2-layer CV repeat 1: error Rates - noSamplesPerFold
getResults(myassessment, c(2,1), 'errorRate', errorType='noSamplesPerFold')
# 2-layer CV repeat 1: error Rates - class
getResults(myassessment, c(2,1), 'errorRate', errorType='class')

# genesSelected
# 2-layer CV repeat 1: genes Selected
getResults(myassessment, c(2,1), 'genesSelected')
# 2-layer CV repeat 1: genes Selected - fold
getResults(myassessment, c(2,1), 'genesSelected', genesType='fold')

# 2-layer CV repeat 1: best number of genes
getResults(myassessment, c(2,1), 'bestOptionValue')

# 2-layer CV repeat 1: execution time
getResults(myassessment, c(2,1), 'executionTime')

# --- Access to one-layer CV inside two-layers CV ---
# errorRate
# 2-layer CV repeat 1 inner layer 3: error Rates
getResults(myassessment, c(2,1,3), 'errorRate')
# 2-layer CV repeat 1 inner layer 3: error Rates - all
getResults(myassessment, c(2,1,3), 'errorRate', errorType='all')
# 2-layer CV repeat 1 inner layer 3: error Rates - cv
getResults(myassessment, c(2,1,3), 'errorRate', errorType='cv')
# 2-layer CV repeat 1 inner layer 3: error Rates - se
getResults(myassessment, c(2,1,3), 'errorRate', errorType='se')
# 2-layer CV repeat 1 inner layer 3: error Rates - class
getResults(myassessment, c(2,1,3), 'errorRate', errorType='class')

# genesSelected
# 2-layer CV repeat 1 inner layer 3: genes Selected
getResults(myassessment, c(2,1,3), 'genesSelected')
# 2-layer CV repeat 1 inner layer 3: genes Selected - frequ
getResults(myassessment, c(2,1,3), 'genesSelected', genesType='frequ')
# 2-layer CV repeat 1 inner layer 3: genes Selected - model 7
getResults(myassessment, c(2,1,3), 'genesSelected', genesType='frequ')[[7]]
getResults(myassessment, c(2,1,3), 'genesSelected')[[7]]

# bestOptionValue
# 2-layer CV repeat 1 inner layer 3: best number of genes
getResults(myassessment, c(2,1,3), 'bestOptionValue')

# executionTime
# 2-layer CV repeat 1 inner layer 3: execution time
getResults(myassessment, c(2,1,3), 'executionTime')

 # --- two-layers CV access to repeat 1, inner layer 2 repeat 2 ---
# Error rates
# 2-layer CV inner layer 3 repeat 2: error Rates
getResults(myassessment, c(2,1,3,1), 'errorRate')
# 2-layer CV repeat 1 inner layer 3 repeat 1: error Rates - all
getResults(myassessment, c(2,1,3,1), 'errorRate', errorType='all')
# 2-layer CV repeat 1 inner layer 3 repeat 1: error Rates - cv
getResults(myassessment, c(2,1,3,1), 'errorRate', errorType='cv')
# 2-layer CV repeat 1 inner layer 3 repeat 1: error Rates - se
getResults(myassessment, c(2,1,3,1), 'errorRate', errorType='se')
# 2-layer CV repeat 1 inner layer 3 repeat 1: error Rates - class
getResults(myassessment, c(2,1,3,1), 'errorRate', errorType='class')
# 2-layer CV repeat 1 inner layer 3 repeat 1: error Rates - fold
getResults(myassessment, c(2,1,3,1), 'errorRate', errorType='fold')
# 2-layer CV repeat 1 inner layer 3 repeat 1: error Rates - noSamplesPerFold
getResults(myassessment, c(2,1,3,1), 'errorRate', errorType='noSamplesPerFold')

# genesSelected
# 2-layer CV repeat 1 inner layer 3 repeat 1: genes Selected
getResults(myassessment, c(2,1,3,1), 'genesSelected')
# 2-layer CV repeat 1 inner layer 3 repeat 1: genes Selected - fold
getResults(myassessment, c(2,1,3,1), 'genesSelected', genesType='fold')
# 2-layer CV repeat 1 inner layer 3 repeat 1: genes Selected - model 3 fold 1(twice)
getResults(myassessment, c(2,1,3,1), 'genesSelected', genesType='fold')[[3]][[1]]
# 2-layer CV repeat 1 inner layer 3 repeat 1: genes Selected frequ - model 3
getResults(myassessment, c(2,1,3,1), 'genesSelected')[[3]]

# 2-layer CV repeat 1 inner layer 3 repeat 1: best number of genes
getResults(myassessment,  c(2,1,3,1), 'bestOptionValue')

# 2-layer CV repeat 1 inner layer 3 repeat 1: execution time
getResults(myassessment,  c(2,1,3,1), 'executionTime')

Rmagpie documentation built on Nov. 8, 2020, 11:09 p.m.