Nothing
##----------------------------------------------------------------------
# DMR analysis
##----------------------------------------------------------------------
#=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=--=
# Handling visibility
#=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=--=
observeEvent(input$meanmetSetLimits, {
if(input$meanmetSetLimits){
shinyjs::show("meanmetylimup")
shinyjs::show("meanmetylimlow")
} else {
shinyjs::hide("meanmetylimup")
shinyjs::hide("meanmetylimlow")
}
})
observeEvent(input$meanmetSortCB, {
if(input$meanmetSortCB){
shinyjs::show("meanmetsort")
} else {
shinyjs::hide("meanmetsort")
}
})
#=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=--=
# UPDATING FIELDS AFTER DATA INPUT
#=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=--=
observeEvent(input$dmrgroupCol , {
updateSelectizeInput(session, 'dmrgroups', choices = {
if (class(dmrdata()) == class(as(SummarizedExperiment(),"RangedSummarizedExperiment"))){
if (!is.null(dmrdata()) & input$dmrgroupCol != "" )
as.character(colData(dmrdata())[,input$dmrgroupCol])
}}, server = TRUE)
})
observe({
updateSelectizeInput(session, 'dmrgroupCol', choices = {
# remove numeric columns
data <- dmrdata()
if(!is.null(data)){
data <- colData(data)
as.character(colnames(data))
}
}, server = TRUE)
})
#=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=--=
# Analysis
#=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=--=
observeEvent(input$dmrAnalysis , {
getPath <- parseDirPath(get.volumes(isolate({input$workingDir})), input$workingDir)
if (length(getPath) == 0) getPath <- paste0(Sys.getenv("HOME"),"/TCGAbiolinksGUI")
groups <- t(combn(isolate({input$dmrgroups}),2))
print(groups)
# read the data from the downloaded path
# prepare it
se <- isolate({dmrdata()})
# Removes probes with all NA
se <- subset(se,subset = (rowSums(!is.na(assay(se))) > 0))
for(i in 1:nrow(groups)) {
group1 <- groups[i,1]
group2 <- groups[i,2]
group1.col <- gsub("[[:punct:]]| ", ".", group1)
group2.col <- gsub("[[:punct:]]| ", ".", group2)
statuscol <- paste("status",group2.col,group1.col,sep = ".")
results <- NULL
withProgress(message = 'DMR analysis in progress',
detail = paste(group1," vs ", group2), value = 0, {
message <- "<br>Saving the results also in a csv file:<ul>"
if(!statuscol %in% colnames(values(se))){
step <- 1000
n <- nrow(se)
for(j in 0:floor(n/step)){
end <- ifelse(((j + 1) * step) > n, n,((j + 1) * step))
results <- rbind(results,
tryCatch({
values(TCGAanalyze_DMR(data = se[((j * step) + 1):end,],
groupCol = isolate({input$dmrgroupCol}),
group1 = group1,
group2 = group2,
plot.filename = FALSE,
save = FALSE,
calculate.pvalues.probes = isolate({input$dmrPvalues}),
p.cut = isolate({input$dmrpvalue}),
diffmean.cut = isolate({input$dmrthrsld}),
cores = isolate({input$dmrcores})))
}, error = function(e) {return(NULL)
}))
incProgress(1/(ceiling(n/step) + 1), detail = paste("Completed ", j + 1, " of ",ceiling(n/step)))
}
if(!is.null(results)){
rownames(results) <- results[,grep("probeID|Composite.Element.REF",colnames(results))]
results <- results[,!(colnames(results) %in% colnames(values(se)))]
}
if(isolate({input$dmrPvalues}) == "all"){
values(se) <- cbind(values(se),results)
} else {
se <- se[rownames(se) %in% rownames(results),]
values(se) <- cbind(values(se),results)
}
incProgress(1/(ceiling(n/step) + 1), detail = "Saving results")
}
se <- TCGAanalyze_DMR(data = se,
groupCol = isolate({input$dmrgroupCol}),
group1 = group1,
group2 = group2,
save = TRUE,
calculate.pvalues.probes = isolate({input$dmrPvalues}),
save.directory = getPath,
plot.filename = paste0("DMR_volcano_",group1,"_vs_",group2,".pdf"),
p.cut = isolate({input$dmrpvalue}),
diffmean.cut = isolate({input$dmrthrsld}),
cores = isolate({input$dmrcores}))
message <- paste0(message,"<li>DMR_results_",
file.path(getPath,
paste0(gsub("_",".",isolate({input$dmrgroupCol})),
"_", gsub("_",".",group1), "_", gsub("_",".",group2), "_",
"pcut_",isolate({input$dmrpvalue}), "_",
"meancut_",isolate({input$dmrthrsld}),".csv")),"</li>")
file <- as.character(parseFilePaths(get.volumes(isolate({input$workingDir})), input$dmrfile)$datapath)
if(!grepl("results",file)) file <- gsub(".rda","_results.rda",file)
save(se,file = file)
setProgress(1, detail = paste("Saving completed"))
})
}
createAlert(session, "dmrmessage", "dmrAlert", title = "DMR completed", style = "success",
content = paste0("Summarized Experiment object with results saved in: ", file, message,"<ul>"),
append = FALSE)
})
#=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=--=
# File selection
#=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=--=
observe({
shinyFileChoose(input,
'dmrfile',
roots = get.volumes(input$workingDir),
session = session,
restrictions = system.file(package='base'),
filetypes = c('', 'rda'))
})
#=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=--=
# Data input
#=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=--=
dmrdata <- reactive({
inFile <- input$dmrfile
if(class(inFile) != "list") return(NULL)
file <- as.character(parseFilePaths(get.volumes(isolate({input$workingDir})), input$dmrfile)$datapath)
withProgress(message = 'Loading data',
detail = 'This may take a while...', value = 0, {
result.file <- gsub(".rda","_results.rda",file)
if(file.exists(result.file)) {
se <- get(load(result.file))
} else {
se <- get(load(file))
}
incProgress(1, detail = "Completed")
})
if(class(se)!= class(as(SummarizedExperiment(),"RangedSummarizedExperiment"))){
createAlert(session, "dmrmessage", "dmrAlert", title = "Data input error", style = "danger",
content = paste0("Sorry, but I'm expecting a Summarized Experiment object, but I got a: ",
class(se)), append = FALSE)
return(NULL)
}
return(se)
})
#=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=--=
# Table
#=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=--=
output$probesSE <- DT::renderDataTable({
data <- dmrdata()
if(!is.null(data)) {
df <- as.data.frame(values(data))
createTable(df)
}
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.