Description Usage Arguments Details Value Warning Author(s) References See Also Examples
Performs the Single Time Point Analysis for detecting differentially expressed genes following Acosta (2015).
1 2 3 |
Z |
a matrix or data.frame representing genes' expression levels. The rows of Z correspond to the genes in the experiment, and the columns correspond to the replicates. Treatment replicates are to the left, control replicates to the right. |
design |
a vector of length equal to the number of columns in |
alpha |
between 0 and 1. Desired level for controlling the false discovery rate (FDR). |
B |
Number of bootstrap or permutation replications for estimating the FDR. |
lambda |
Parameter for the estimation of pi0 and of the FDR (see Storey, 2002). |
th |
Threshold values for estimating the FDR. If |
PER |
If |
BCa |
If |
gamma |
Confidence level for the FDR's BCa confidence upper bound. |
R |
Number of bootstrap replications for the computation of the FDR's BCa confidence upper bound. |
... |
additional arguments for parallel computation in |
For details on the computations performed in this function, see Acosta (2015).
Additional parameters in the '...
' argument are used for
parallel computation in bootstrap calculations. These are supplied
to calls to the boot
function in package boot
. With
this in mind, the use of additional arguments must be restricted to
arguments parallel
and ncpus
from function boot
.
stp
returns an object of class 'STP
', which is a
list with components:
dgenes |
factor with the classification of each gene in |
tstar |
Threshold value used to identify differentially expressed genes. |
astar |
Achieved FDR level. |
Q |
Estimations of the FDR using each value in |
th |
Threshold values used for estimating the FDR. |
qvalues |
Estimated Q-Values for the genes in the analysis. If argument
|
pi0 |
Estimation of pi0, the true proportion of non differentially expressed genes in the experiment. |
B |
Number of bootstrap or permutation replications used for estimating the FDR. |
lambda |
Parameter used for the estimation of pi0 and the FDR. |
ac |
Artificial components of |
gNames |
Gene names (by default the row names in |
iRatio |
Inertia ratio Var(ψ[2]) / λ[1],
where λ[1] is the first eigenvalue of |
bca |
BCa upper confidence bounds for the FDR using each value in |
gamma |
Confidence level used in the computation of the BCa upper bounds. |
alpha |
Desired FDR level. |
call |
The matched call. |
If argument BCa=TRUE
, computations may take a considerable
amount of time.
Juan Pablo Acosta (jpacostar@unal.edu.co).
Acosta, J. P. (2015) Strategy for Multivariate Identification of Differentially Expressed Genes in Microarray Data. Unpublished MS thesis. Universidad Nacional de Colombia, Bogot\'a.
Storey, J. D. (2002) A direct approach to false discovery rates. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 64(3): 479–498.
Efron B. and Tibshirani R. J. (1994) An Introduction to the Bootstrap. Chapman & Hall/CRC, 1993.
tc
for Time Course Analysis; plot.STP
,
print.STP
.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | ## Single time point analysis for 500 genes with 10 treatment
## replicates and 10 control replicates
n <- 500; p <- 20; p1 <- 10
des <- c(rep(1, p1), rep(2, (p-p1)))
mu <- as.matrix(rexp(n, rate=1))
Z <- t(apply(mu, 1, function(mui) rnorm(p, mean=mui, sd=1)))
### 5 up regulated genes
Z[1:5,1:p1] <- Z[1:5,1:p1] + 5
### 10 down regulated genes
Z[6:15,(p1+1):p] <- Z[6:15,(p1+1):p] + 4
resSTP <- stp(Z, des)
resSTP
plot(resSTP)
## Not run:
## Phytophthora Infestans Single Time Point Analysis (takes time...)
dataPI <- phytophthora[[4]]
desPI <- c(rep(1,8), rep(2,8))
resPI <- stp(dataPI, desPI)
resPI
plot(resPI, tp="60 hai")
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.