Description Details Author(s) References Examples
This package provides a multivariate inferential analysis method for detecting differentially expressed genes in gene expression data. It uses artificial components, close to the data's principal components but with an exact interpretation in terms of differential genetic expression, to identify differentially expressed genes while controlling the false discovery rate (FDR). The methods on this package are described in the article Multivariate Method for Inferential Identification of Differentially Expressed Genes in Gene Expression Experiments by Acosta (2015).
Package: | acde |
Type: | Package |
Version: | 1.0 |
Date: | 2015-02-25 |
License: | GLP-3 |
LazyData: | yes |
Depends: | R(>= 3.1), ade4(>= 1.6), boot(>= 1.3) |
Encoding: | UTF-8 |
Built: | R 3.1.2; 2015-05-01; unix |
Index:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | ac Artificial Components for Gene
Expression Data
acde-package Artificial Components Detection of
Differentially Expressed Genes
bcaFDR BCa Confidence Upper Bound for the FDR.
fdr False Discovery Rate Computation
phytophthora Gene Expression Data for Tomato Plants
Inoculated with _Phytophthora infestans_
plot.STP Plot Method for Single Time Point Analysis
plot.TC Plot Method for Time Course Analysis
print.STP Print Method for Single Time Point Analysis
print.TC Print Method for Time Course Analysis
qval Q-Values Computation
stp Single Time Point Analysis for Detecting
Differentially Expressed Genes
tc Time Course Analysis for Detecting
Differentially Expressed Genes
|
Juan Pablo Acosta, Liliana Lopez-Kleine
Maintainer: Juan Pablo Acosta <jpacostar@unal.edu.co>
Acosta, J. P. (2015) Strategy for Multivariate Identification of Differentially Expressed Genes in Microarray Data. Unpublished MS thesis. Universidad Nacional de Colombia, Bogot\'a.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 | ## Single time point analysis for 500 genes with 10 treatment
## replicates and 10 control replicates
n <- 500; p <- 20; p1 <- 10
des <- c(rep(1, p1), rep(2, (p-p1)))
mu <- as.matrix(rexp(n, rate=1))
Z <- t(apply(mu, 1, function(mui) rnorm(p, mean=mui, sd=1)))
### 5 up regulated genes
Z[1:5,1:p1] <- Z[1:5,1:p1] + 5
### 10 down regulated genes
Z[6:15,(p1+1):p] <- Z[6:15,(p1+1):p] + 4
resSTP <- stp(Z, des)
resSTP
plot(resSTP)
## Time course analysis for 500 genes with 10 treatment
## replicates and 10 control replicates
tPts <- c("h0", "12h", "24h")
n <- 500; p <- 20; p1 <- 10
Z <- vector("list", 3)
des <- vector("list", 3)
for(tp in 1:3){ des[[tp]] <- c(rep(1, p1), rep(2, (p-p1))) }
mu <- as.matrix(rexp(n, rate=1))
### h0 time point (no diff. expr.)
Z[[1]] <- t(apply(mu, 1, function(mui) rnorm(p, mean=mui, sd=1)))
### h12 time point (diff. expr. begins)
Z[[2]] <- t(apply(mu, 1, function(mui) rnorm(p, mean=mui, sd=1)))
#### Up regulated genes
Z[[2]][1:5,1:p1] <- Z[[2]][1:5,1:p1] +
matrix(runif(5*p1, 1, 3), nrow=5)
#### Down regulated genes
Z[[2]][6:15,(p1+1):p] <- Z[[2]][6:15,(p1+1):p] +
matrix(runif(10*(p-p1), 1, 2), nrow=10)
### h24 time point (maximum differential expression)
Z[[3]] <- t(apply(mu, 1, function(mui) rnorm(p, mean=mui, sd=1)))
#### 5 up regulated genes
Z[[3]][1:5,1:p1] <- Z[[3]][1:5,1:p1] + 5
#### 10 down regulated genes
Z[[3]][6:15,(p1+1):p] <- Z[[3]][6:15,(p1+1):p] + 4
resTC <- tc(Z, des)
resTC
summary(resTC)
plot(resTC)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.