Nothing
#' @title Convert old celda model object to \code{SCE} object
#' @description Convert a old celda model object (\code{celda_C},
#' \code{celda_G}, or \code{celda_CG} object) to a
#' \linkS4class{SingleCellExperiment} object containing celda model
#' information in \code{metadata} slot. Counts matrix is stored in the
#' \code{"counts"} assay slot in \code{assays}.
#' @param celdaModel A \code{celdaModel} or \code{celdaList} object generated
#' using older versions of \code{celda}.
#' @param counts A numeric \link{matrix} of counts used to generate
#' \code{celdaModel}. Dimensions and MD5 checksum will be checked by
#' \link{compareCountMatrix}.
#' @param useAssay A string specifying the name of the
#' \link{assay} slot to use. Default "counts".
#' @param altExpName The name for the \link{altExp} slot
#' to use. Default "featureSubset".
#' @param ... Ignored. Placeholder to prevent check warning.
#' @return A \linkS4class{SingleCellExperiment} object. Function
#' parameter settings are stored in the \link{metadata}
#' \code{"celda_parameters"} slot.
#' Columns \code{celda_sample_label} and \code{celda_cell_cluster} in
#' \link{colData} contain sample labels and celda cell
#' population clusters. Column \code{celda_feature_module} in
#' \link{rowData} contain feature modules.
#' @export
setGeneric("celdatosce", function(celdaModel, counts, ...) {
standardGeneric("celdatosce")})
#' @rdname celdatosce
#' @examples
#' data(celdaCMod, celdaCSim)
#' sce <- celdatosce(celdaCMod, celdaCSim$counts)
#' @export
setMethod("celdatosce",
signature(celdaModel = "celda_C"),
function(celdaModel,
counts,
useAssay = "counts",
altExpName = "featureSubset") {
compareCountMatrix(counts, celdaModel, errorOnMismatch = FALSE)
ls <- list()
ls[[useAssay]] <- counts
sce <- SingleCellExperiment::SingleCellExperiment(assays = ls)
SingleCellExperiment::altExp(sce, altExpName) <- sce
xClass <- "matrix"
altExp <- .createSCEceldaC(celdaCMod = celdaModel,
sce = SingleCellExperiment::altExp(sce, altExpName),
xClass = xClass,
useAssay = useAssay,
algorithm = NULL,
stopIter = NULL,
maxIter = NULL,
splitOnIter = NULL,
splitOnLast = NULL,
nchains = NULL,
zInitialize = NULL,
zInit = NULL,
logfile = NULL,
verbose = NULL)
SingleCellExperiment::altExp(sce, altExpName) <- altExp
return(sce)
}
)
#' @rdname celdatosce
#' @examples
#' data(celdaGMod, celdaGSim)
#' sce <- celdatosce(celdaGMod, celdaGSim$counts)
#' @export
setMethod("celdatosce",
signature(celdaModel = "celda_G"),
function(celdaModel,
counts,
useAssay = "counts",
altExpName = "featureSubset") {
compareCountMatrix(counts, celdaModel, errorOnMismatch = FALSE)
ls <- list()
ls[[useAssay]] <- counts
sce <- SingleCellExperiment::SingleCellExperiment(assays = ls)
SingleCellExperiment::altExp(sce, altExpName) <- sce
xClass <- "matrix"
altExp <- .createSCEceldaG(celdaGMod = celdaModel,
sce = SingleCellExperiment::altExp(sce, altExpName),
xClass = xClass,
useAssay = useAssay,
stopIter = NULL,
maxIter = NULL,
splitOnIter = NULL,
splitOnLast = NULL,
nchains = NULL,
yInitialize = NULL,
yInit = NULL,
logfile = NULL,
verbose = NULL)
SingleCellExperiment::altExp(sce, altExpName) <- altExp
return(sce)
}
)
#' @rdname celdatosce
#' @examples
#' data(celdaCGMod, celdaCGSim)
#' sce <- celdatosce(celdaCGMod, celdaCGSim$counts)
#' @export
setMethod("celdatosce",
signature(celdaModel = "celda_CG"),
function(celdaModel,
counts,
useAssay = "counts",
altExpName = "featureSubset") {
compareCountMatrix(counts, celdaModel, errorOnMismatch = FALSE)
ls <- list()
ls[[useAssay]] <- counts
sce <- SingleCellExperiment::SingleCellExperiment(assays = ls)
SingleCellExperiment::altExp(sce, altExpName) <- sce
xClass <- "matrix"
altExp <- .createSCEceldaCG(celdaCGMod = celdaModel,
sce = SingleCellExperiment::altExp(sce, altExpName),
xClass = xClass,
useAssay = useAssay,
algorithm = NULL,
stopIter = NULL,
maxIter = NULL,
splitOnIter = NULL,
splitOnLast = NULL,
nchains = NULL,
zInitialize = NULL,
yInitialize = NULL,
zInit = NULL,
yInit = NULL,
logfile = NULL,
verbose = NULL)
SingleCellExperiment::altExp(sce, altExpName) <- altExp
return(sce)
}
)
#' @rdname celdatosce
#' @examples
#' data(celdaCGGridSearchRes, celdaCGSim)
#' sce <- celdatosce(celdaCGGridSearchRes, celdaCGSim$counts)
#' @export
setMethod("celdatosce",
signature(celdaModel = "celdaList"),
function(celdaModel,
counts,
useAssay = "counts",
altExpName = "featureSubset") {
compareCountMatrix(counts, celdaModel, errorOnMismatch = FALSE)
ls <- list()
ls[[useAssay]] <- counts
sce <- SingleCellExperiment::SingleCellExperiment(assays = ls)
SingleCellExperiment::altExp(sce, altExpName) <- sce
xClass <- "matrix"
model <- celdaModel@celdaGridSearchParameters$model
paramsTest <- celdaModel@celdaGridSearchParameters$paramsTest
paramsFixed <-
celdaModel@celdaGridSearchParameters$paramsFixed
maxIter <- celdaModel@celdaGridSearchParameters$maxIter
nchains <- celdaModel@celdaGridSearchParameters$nchains
cores <- celdaModel@celdaGridSearchParameters$cores
bestOnly <- celdaModel@celdaGridSearchParameters$bestOnly
perplexity <- celdaModel@celdaGridSearchParameters$perplexity
verbose <- celdaModel@celdaGridSearchParameters$verbose
logfilePrefix <-
celdaModel@celdaGridSearchParameters$logfilePrefix
altExp <- .createSCEceldaGridSearch(celdaList = celdaModel,
sce = SingleCellExperiment::altExp(sce, altExpName),
xClass = xClass,
useAssay = useAssay,
model = model,
paramsTest = paramsTest,
paramsFixed = paramsFixed,
maxIter = maxIter,
seed = NULL,
nchains = nchains,
cores = cores,
bestOnly = bestOnly,
perplexity = perplexity,
verbose = verbose,
logfilePrefix = logfilePrefix)
SingleCellExperiment::altExp(sce, altExpName) <- altExp
return(sce)
}
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.