Nothing
#' @title Cell and feature clustering with Celda
#' @description Clusters the rows and columns of a count matrix containing
#' single-cell data into L modules and K subpopulations, respectively. The
#' \code{useAssay} \link{assay} slot in
#' \code{altExpName} \link{altExp} slot will be used if
#' it exists. Otherwise, the \code{useAssay}
#' \link{assay} slot in \code{x} will be used if
#' \code{x} is a \linkS4class{SingleCellExperiment} object.
#' @param x A numeric \link{matrix} of counts or a
#' \linkS4class{SingleCellExperiment}
#' with the matrix located in the \link{assay}
#' slot under \code{useAssay} in \code{altExp(x, altExpName)}.
#' Rows represent features and columns represent cells.
#' @param useAssay A string specifying the name of the
#' \link{assay} slot to use. Default "counts".
#' @param altExpName The name for the \link{altExp} slot
#' to use. Default "featureSubset".
#' @param sampleLabel Vector or factor. Denotes the sample label for each cell
#' (column) in the count matrix.
#' @param K Integer. Number of cell populations.
#' @param L Integer. Number of feature modules.
#' @param alpha Numeric. Concentration parameter for Theta. Adds a pseudocount
#' to each cell population in each sample. Default 1.
#' @param beta Numeric. Concentration parameter for Phi. Adds a pseudocount to
#' each feature module in each cell population. Default 1.
#' @param delta Numeric. Concentration parameter for Psi. Adds a pseudocount to
#' each feature in each module. Default 1.
#' @param gamma Numeric. Concentration parameter for Eta. Adds a pseudocount to
#' the number of features in each module. Default 1.
#' @param algorithm String. Algorithm to use for clustering cell subpopulations.
#' One of 'EM' or 'Gibbs'. The EM algorithm for cell clustering is faster,
#' especially for larger numbers of cells. However, more chains may be required
#' to ensure a good solution is found. Default 'EM'.
#' @param stopIter Integer. Number of iterations without improvement in the log
#' likelihood to stop inference. Default 10.
#' @param maxIter Integer. Maximum number of iterations of Gibbs sampling to
#' perform. Default 200.
#' @param splitOnIter Integer. On every \code{splitOnIter} iteration,
#' a heuristic
#' will be applied to determine if a cell population or feature module should
#' be reassigned and another cell population or feature module should be split
#' into two clusters. To disable splitting, set to -1. Default 10.
#' @param splitOnLast Integer. After \code{stopIter} iterations have been
#' performed without improvement, a heuristic will be applied to determine if
#' a cell population or feature module should be reassigned and another cell
#' population or feature module should be split into two clusters. If a split
#' occurs, then 'stopIter' will be reset. Default TRUE.
#' @param seed Integer. Passed to \link[withr]{with_seed}. For reproducibility,
#' a default value of 12345 is used. If NULL, no calls to
#' \link[withr]{with_seed} are made.
#' @param nchains Integer. Number of random cluster initializations. Default 3.
#' @param zInitialize Chararacter. One of 'random', 'split', or 'predefined'.
#' With 'random', cells are randomly assigned to a populations. With 'split',
#' cells will be split into sqrt(K) populations and then each popluation will
#' be subsequently split into another sqrt(K) populations. With 'predefined',
#' values in \code{zInit} will be used to initialize \code{z}. Default 'split'.
#' @param yInitialize Chararacter. One of 'random', 'split', or 'predefined'.
#' With 'random', features are randomly assigned to a modules. With 'split',
#' features will be split into sqrt(L) modules and then each module will be
#' subsequently split into another sqrt(L) modules. With 'predefined', values
#' in \code{yInit} will be used to initialize \code{y}. Default 'split'.
#' @param zInit Integer vector. Sets initial starting values of z. If NULL,
#' starting values for each cell will be randomly sampled from 1:K. 'zInit'
#' can only be used when \code{initialize = "random"}. Default NULL.
#' @param yInit Integer vector. Sets initial starting values of y. If NULL,
#' starting values for each feature will be randomly sampled from 1:L.
#' 'yInit' can only be used when \code{initialize = "random"}. Default NULL.
#' @param countChecksum Character. An MD5 checksum for the counts matrix.
#' Default NULL.
#' @param logfile Character. Messages will be redirected to a file named
#' `logfile`. If NULL, messages will be printed to stdout. Default NULL.
#' @param verbose Logical. Whether to print log messages. Default TRUE.
#' @param ... Ignored. Placeholder to prevent check warning.
#' @return A \linkS4class{SingleCellExperiment} object. Function
#' parameter settings are stored in \link{metadata}
#' \code{"celda_parameters"} in \link{altExp} slot.
#' In \link{altExp} slot,
#' columns \code{celda_sample_label} and \code{celda_cell_cluster} in
#' \link{colData} contain sample labels and celda cell
#' population clusters. Column \code{celda_feature_module} in
#' \link{rowData} contains feature modules.
#' @seealso \link{celda_G} for feature clustering and \link{celda_C} for
#' clustering cells. \link{celdaGridSearch} can be used to run multiple
#' values of K/L and multiple chains in parallel.
#' @import Rcpp RcppEigen
#' @export
setGeneric("celda_CG", function(x, ...) {
standardGeneric("celda_CG")})
#' @rdname celda_CG
#' @export
setMethod("celda_CG",
signature(x = "SingleCellExperiment"),
function(x,
useAssay = "counts",
altExpName = "featureSubset",
sampleLabel = NULL,
K,
L,
alpha = 1,
beta = 1,
delta = 1,
gamma = 1,
algorithm = c("EM", "Gibbs"),
stopIter = 10,
maxIter = 200,
splitOnIter = 10,
splitOnLast = TRUE,
seed = 12345,
nchains = 3,
zInitialize = c("split", "random", "predefined"),
yInitialize = c("split", "random", "predefined"),
countChecksum = NULL,
zInit = NULL,
yInit = NULL,
logfile = NULL,
verbose = TRUE) {
xClass <- "SingleCellExperiment"
if (!altExpName %in% SingleCellExperiment::altExpNames(x)) {
stop(altExpName, " not in 'altExpNames(x)'. Run ",
"selectFeatures(x) first!")
}
altExp <- SingleCellExperiment::altExp(x, altExpName)
if (!useAssay %in% SummarizedExperiment::assayNames(altExp)) {
stop(useAssay, " not in assayNames(altExp(x, altExpName))")
}
counts <- SummarizedExperiment::assay(altExp, i = useAssay)
altExp <- .celdaCGWithSeed(counts = counts,
xClass = xClass,
useAssay = useAssay,
sce = altExp,
sampleLabel = sampleLabel,
K = K,
L = L,
alpha = alpha,
beta = beta,
delta = delta,
gamma = gamma,
algorithm = match.arg(algorithm),
stopIter = stopIter,
maxIter = maxIter,
splitOnIter = splitOnIter,
splitOnLast = splitOnLast,
seed = seed,
nchains = nchains,
zInitialize = match.arg(zInitialize),
yInitialize = match.arg(yInitialize),
countChecksum = countChecksum,
zInit = zInit,
yInit = yInit,
logfile = logfile,
verbose = verbose)
SingleCellExperiment::altExp(x, altExpName) <- altExp
return(x)
}
)
#' @rdname celda_CG
#' @examples
#' data(celdaCGSim)
#' sce <- celda_CG(celdaCGSim$counts,
#' K = celdaCGSim$K,
#' L = celdaCGSim$L,
#' sampleLabel = celdaCGSim$sampleLabel,
#' nchains = 1)
#' @export
setMethod("celda_CG",
signature(x = "matrix"),
function(x,
useAssay = "counts",
altExpName = "featureSubset",
sampleLabel = NULL,
K,
L,
alpha = 1,
beta = 1,
delta = 1,
gamma = 1,
algorithm = c("EM", "Gibbs"),
stopIter = 10,
maxIter = 200,
splitOnIter = 10,
splitOnLast = TRUE,
seed = 12345,
nchains = 3,
zInitialize = c("split", "random", "predefined"),
yInitialize = c("split", "random", "predefined"),
countChecksum = NULL,
zInit = NULL,
yInit = NULL,
logfile = NULL,
verbose = TRUE) {
ls <- list()
ls[[useAssay]] <- x
sce <- SingleCellExperiment::SingleCellExperiment(assays = ls)
SingleCellExperiment::altExp(sce, altExpName) <- sce
xClass <- "matrix"
altExp <- .celdaCGWithSeed(counts = x,
xClass = xClass,
useAssay = useAssay,
sce = SingleCellExperiment::altExp(sce, altExpName),
sampleLabel = sampleLabel,
K = K,
L = L,
alpha = alpha,
beta = beta,
delta = delta,
gamma = gamma,
algorithm = match.arg(algorithm),
stopIter = stopIter,
maxIter = maxIter,
splitOnIter = splitOnIter,
splitOnLast = splitOnLast,
seed = seed,
nchains = nchains,
zInitialize = match.arg(zInitialize),
yInitialize = match.arg(yInitialize),
countChecksum = countChecksum,
zInit = zInit,
yInit = yInit,
logfile = logfile,
verbose = verbose)
SingleCellExperiment::altExp(sce, altExpName) <- altExp
return(sce)
}
)
.celdaCGWithSeed <- function(counts,
xClass,
useAssay,
sce,
sampleLabel,
K,
L,
alpha,
beta,
delta,
gamma,
algorithm,
stopIter,
maxIter,
splitOnIter,
splitOnLast,
seed,
nchains,
zInitialize,
yInitialize,
countChecksum,
zInit,
yInit,
logfile,
verbose) {
.validateCounts(counts)
if (is.null(seed)) {
celdaCGMod <- .celda_CG(
counts = counts,
sampleLabel = sampleLabel,
K = K,
L = L,
alpha = alpha,
beta = beta,
delta = delta,
gamma = gamma,
algorithm = algorithm,
stopIter = stopIter,
maxIter = maxIter,
splitOnIter = splitOnIter,
splitOnLast = splitOnLast,
nchains = nchains,
zInitialize = zInitialize,
yInitialize = yInitialize,
countChecksum = countChecksum,
zInit = zInit,
yInit = yInit,
logfile = logfile,
verbose = verbose,
reorder = TRUE
)
} else {
with_seed(
seed,
celdaCGMod <- .celda_CG(
counts = counts,
sampleLabel = sampleLabel,
K = K,
L = L,
alpha = alpha,
beta = beta,
delta = delta,
gamma = gamma,
algorithm = algorithm,
stopIter = stopIter,
maxIter = maxIter,
splitOnIter = splitOnIter,
splitOnLast = splitOnLast,
nchains = nchains,
zInitialize = zInitialize,
yInitialize = yInitialize,
countChecksum = countChecksum,
zInit = zInit,
yInit = yInit,
logfile = logfile,
verbose = verbose,
reorder = TRUE
)
)
}
sce <- .createSCEceldaCG(celdaCGMod = celdaCGMod,
sce = sce,
xClass = xClass,
useAssay = useAssay,
algorithm = algorithm,
stopIter = stopIter,
maxIter = maxIter,
splitOnIter = splitOnIter,
splitOnLast = splitOnLast,
nchains = nchains,
zInitialize = zInitialize,
yInitialize = yInitialize,
zInit = zInit,
yInit = yInit,
logfile = logfile,
verbose = verbose)
return(sce)
}
.celda_CG <- function(counts,
sampleLabel = NULL,
K,
L,
alpha = 1,
beta = 1,
delta = 1,
gamma = 1,
algorithm = c("EM", "Gibbs"),
stopIter = 10,
maxIter = 200,
splitOnIter = 10,
splitOnLast = TRUE,
nchains = 3,
zInitialize = c("split", "random", "predefined"),
yInitialize = c("split", "random", "predefined"),
countChecksum = NULL,
zInit = NULL,
yInit = NULL,
logfile = NULL,
verbose = TRUE,
reorder = TRUE) {
.logMessages(paste(rep("-", 50), collapse = ""),
logfile = logfile,
append = FALSE,
verbose = verbose
)
.logMessages("Starting Celda_CG: Clustering cells and genes.",
logfile = logfile,
append = TRUE,
verbose = verbose
)
.logMessages(paste(rep("-", 50), collapse = ""),
logfile = logfile,
append = TRUE,
verbose = verbose
)
startTime <- Sys.time()
counts <- .processCounts(counts)
if (is.null(countChecksum)) {
countChecksum <- .createCountChecksum(counts)
}
sampleLabel <- .processSampleLabels(sampleLabel, ncol(counts))
s <- as.integer(sampleLabel)
algorithm <- match.arg(algorithm)
algorithmFun <- ifelse(algorithm == "Gibbs",
".cCCalcGibbsProbZ",
".cCCalcEMProbZ"
)
zInitialize <- match.arg(zInitialize)
yInitialize <- match.arg(yInitialize)
allChains <- seq(nchains)
# Pre-compute lgamma values
lggamma <- lgamma(seq(0, nrow(counts) + L) + gamma)
lgdelta <- c(NA, lgamma((seq(nrow(counts) + L) * delta)))
bestResult <- NULL
for (i in allChains) {
## Initialize cluster labels
.logMessages(date(),
".. Initializing 'z' in chain",
i,
"with",
paste0("'", zInitialize, "' "),
logfile = logfile,
append = TRUE,
verbose = verbose
)
.logMessages(date(),
".. Initializing 'y' in chain",
i,
"with",
paste0("'", yInitialize, "' "),
logfile = logfile,
append = TRUE,
verbose = verbose
)
if (zInitialize == "predefined") {
if (is.null(zInit)) {
stop("'zInit' needs to specified when initilize.z == 'given'.")
}
z <- .initializeCluster(K,
ncol(counts),
initial = zInit,
fixed = NULL
)
} else if (zInitialize == "split") {
z <- .initializeSplitZ(
counts,
K = K,
alpha = alpha,
beta = beta
)
} else {
z <- .initializeCluster(K,
ncol(counts),
initial = NULL,
fixed = NULL
)
}
if (yInitialize == "predefined") {
if (is.null(yInit)) {
stop("'yInit' needs to specified when initilize.y == 'given'.")
}
y <- .initializeCluster(L,
nrow(counts),
initial = yInit,
fixed = NULL
)
} else if (yInitialize == "split") {
y <- .initializeSplitY(counts,
L,
beta = beta,
delta = delta,
gamma = gamma
)
} else {
y <- .initializeCluster(L,
nrow(counts),
initial = NULL,
fixed = NULL
)
}
zBest <- z
yBest <- y
## Calculate counts one time up front
p <- .cCGDecomposeCounts(counts, s, z, y, K, L)
mCPByS <- p$mCPByS
nTSByC <- p$nTSByC
nTSByCP <- p$nTSByCP
nCP <- p$nCP
nByG <- p$nByG
nByC <- p$nByC
nByTS <- p$nByTS
nGByTS <- p$nGByTS
nGByCP <- p$nGByCP
nM <- p$nM
nG <- p$nG
nS <- p$nS
rm(p)
ll <- .cCGCalcLL(
K = K,
L = L,
mCPByS = mCPByS,
nTSByCP = nTSByCP,
nByG = nByG,
nByTS = nByTS,
nGByTS = nGByTS,
nS = nS,
nG = nG,
alpha = alpha,
beta = beta,
delta = delta,
gamma = gamma
)
iter <- 1L
numIterWithoutImprovement <- 0L
doCellSplit <- TRUE
doGeneSplit <- TRUE
while (iter <= maxIter & numIterWithoutImprovement <= stopIter) {
## Gibbs sampling for each gene
lgbeta <- lgamma(seq(0, max(nCP)) + beta)
nextY <- .cGCalcGibbsProbY(
counts = nGByCP,
nTSByC = nTSByCP,
nByTS = nByTS,
nGByTS = nGByTS,
nByG = nByG,
y = y,
L = L,
nG = nG,
beta = beta,
delta = delta,
gamma = gamma,
lgbeta = lgbeta,
lggamma = lggamma,
lgdelta = lgdelta
)
nTSByCP <- nextY$nTSByC
nGByTS <- nextY$nGByTS
nByTS <- nextY$nByTS
nTSByC <- .rowSumByGroupChange(counts, nTSByC, nextY$y, y, L)
y <- nextY$y
## Gibbs or EM sampling for each cell
nextZ <- do.call(algorithmFun, list(
counts = nTSByC,
mCPByS = mCPByS,
nGByCP = nTSByCP,
nCP = nCP,
nByC = nByC,
z = z,
s = s,
K = K,
nG = L,
nM = nM,
alpha = alpha,
beta = beta
))
mCPByS <- nextZ$mCPByS
nTSByCP <- nextZ$nGByCP
nCP <- nextZ$nCP
nGByCP <- .colSumByGroupChange(counts, nGByCP, nextZ$z, z, K)
z <- nextZ$z
## Perform split on i-th iteration defined by splitOnIter
tempLl <- .cCGCalcLL(
K = K,
L = L,
mCPByS = mCPByS,
nTSByCP = nTSByCP,
nByG = nByG,
nByTS = nByTS,
nGByTS = nGByTS,
nS = nS,
nG = nG,
alpha = alpha,
beta = beta,
delta = delta,
gamma = gamma
)
if (L > 2 & iter != maxIter &
(((numIterWithoutImprovement == stopIter &
!all(tempLl > ll)) & isTRUE(splitOnLast)) |
(splitOnIter > 0 & iter %% splitOnIter == 0 &
isTRUE(doGeneSplit)))) {
.logMessages(date(),
" .... Determining if any gene clusters should be split.",
logfile = logfile,
append = TRUE,
sep = "",
verbose = verbose
)
res <- .cCGSplitY(counts,
y,
mCPByS,
nGByCP,
nTSByC,
nTSByCP,
nByG,
nByTS,
nGByTS,
nCP,
s,
z,
K,
L,
nS,
nG,
alpha,
beta,
delta,
gamma,
yProb = t(nextY$probs),
maxClustersToTry = max(L / 2, 10),
minCell = 3
)
.logMessages(res$message,
logfile = logfile,
append = TRUE,
verbose = verbose
)
# Reset convergence counter if a split occured
if (!isTRUE(all.equal(y, res$y))) {
numIterWithoutImprovement <- 1L
doGeneSplit <- TRUE
} else {
doGeneSplit <- FALSE
}
## Re-calculate variables
y <- res$y
nTSByCP <- res$nTSByCP
nByTS <- res$nByTS
nGByTS <- res$nGByTS
nTSByC <- .rowSumByGroup(counts, group = y, L = L)
}
if (K > 2 & iter != maxIter &
(((numIterWithoutImprovement == stopIter &
!all(tempLl > ll)) & isTRUE(splitOnLast)) |
(splitOnIter > 0 & iter %% splitOnIter == 0 &
isTRUE(doCellSplit)))) {
.logMessages(date(),
" .... Determining if any cell clusters should be split.",
logfile = logfile,
append = TRUE,
sep = "",
verbose = verbose
)
res <- .cCGSplitZ(counts,
mCPByS,
nTSByC,
nTSByCP,
nByG,
nByTS,
nGByTS,
nCP,
s,
z,
K,
L,
nS,
nG,
alpha,
beta,
delta,
gamma,
zProb = t(nextZ$probs),
maxClustersToTry = K,
minCell = 3
)
.logMessages(res$message,
logfile = logfile,
append = TRUE,
verbose = verbose
)
# Reset convergence counter if a split occured
if (!isTRUE(all.equal(z, res$z))) {
numIterWithoutImprovement <- 0L
doCellSplit <- TRUE
} else {
doCellSplit <- FALSE
}
## Re-calculate variables
z <- res$z
mCPByS <- res$mCPByS
nTSByCP <- res$nTSByCP
nCP <- res$nCP
nGByCP <- .colSumByGroup(counts, group = z, K = K)
}
## Calculate complete likelihood
tempLl <- .cCGCalcLL(
K = K,
L = L,
mCPByS = mCPByS,
nTSByCP = nTSByCP,
nByG = nByG,
nByTS = nByTS,
nGByTS = nGByTS,
nS = nS,
nG = nG,
alpha = alpha,
beta = beta,
delta = delta,
gamma = gamma
)
if ((all(tempLl > ll)) | iter == 1) {
zBest <- z
yBest <- y
llBest <- tempLl
numIterWithoutImprovement <- 1L
} else {
numIterWithoutImprovement <- numIterWithoutImprovement + 1L
}
ll <- c(ll, tempLl)
.logMessages(date(),
" .... Completed iteration: ",
iter,
" | logLik: ",
tempLl,
logfile = logfile,
append = TRUE,
sep = "",
verbose = verbose
)
iter <- iter + 1L
}
names <- list(
row = rownames(counts),
column = colnames(counts),
sample = levels(sampleLabel)
)
result <- list(
z = zBest,
y = yBest,
completeLogLik = ll,
finalLogLik = llBest,
K = K,
L = L,
alpha = alpha,
beta = beta,
delta = delta,
gamma = gamma,
sampleLabel = sampleLabel,
names = names,
countChecksum = countChecksum
)
class(result) <- "celda_CG"
if (is.null(bestResult) ||
result$finalLogLik > bestResult$finalLogLik) {
bestResult <- result
}
.logMessages(date(),
".. Finished chain",
i,
logfile = logfile,
append = TRUE,
verbose = verbose
)
}
## Peform reordering on final Z and Y assigments:
bestResult <- methods::new("celda_CG",
clusters = list(z = zBest, y = yBest),
params = list(
K = as.integer(K),
L = as.integer(L),
alpha = alpha,
beta = beta,
delta = delta,
gamma = gamma,
countChecksum = countChecksum
),
completeLogLik = ll,
finalLogLik = llBest,
sampleLabel = sampleLabel,
names = names
)
if (isTRUE(reorder)) {
bestResult <- .reorderCeldaCG(counts = counts, res = bestResult)
}
endTime <- Sys.time()
.logMessages(paste(rep("-", 50), collapse = ""),
logfile = logfile,
append = TRUE,
verbose = verbose
)
.logMessages("Completed Celda_CG. Total time:",
format(difftime(endTime, startTime)),
logfile = logfile,
append = TRUE,
verbose = verbose
)
.logMessages(paste(rep("-", 50), collapse = ""),
logfile = logfile,
append = TRUE,
verbose = verbose
)
return(bestResult)
}
# Calculate the loglikelihood for the celda_CG model
.cCGCalcLL <- function(K,
L,
mCPByS,
nTSByCP,
nByG,
nByTS,
nGByTS,
nS,
nG,
alpha,
beta,
delta,
gamma) {
nG <- sum(nGByTS)
## Calculate for "Theta" component
a <- nS * lgamma(K * alpha)
b <- sum(lgamma(mCPByS + alpha))
c <- -nS * K * lgamma(alpha)
d <- -sum(lgamma(colSums(mCPByS + alpha)))
thetaLl <- a + b + c + d
## Calculate for "Phi" component
a <- K * lgamma(L * beta)
b <- sum(lgamma(nTSByCP + beta))
c <- -K * L * lgamma(beta)
d <- -sum(lgamma(colSums(nTSByCP + beta)))
phiLl <- a + b + c + d
## Calculate for "Psi" component
a <- sum(lgamma(nGByTS * delta))
b <- sum(lgamma(nByG + delta))
c <- -nG * lgamma(delta)
d <- -sum(lgamma(nByTS + (nGByTS * delta)))
psiLl <- a + b + c + d
## Calculate for "Eta" side
a <- lgamma(L * gamma)
b <- sum(lgamma(nGByTS + gamma))
c <- -L * lgamma(gamma)
d <- -lgamma(sum(nGByTS + gamma))
etaLl <- a + b + c + d
final <- thetaLl + phiLl + psiLl + etaLl
return(final)
}
# Takes raw counts matrix and converts it to a series of matrices needed for
# log likelihood calculation
# @param counts Integer matrix. Rows represent features and columns represent
# cells.
# @param s Integer vector. Contains the sample label for each cell (column) in
# the count matrix.
# @param z Numeric vector. Denotes cell population labels.
# @param y Numeric vector. Denotes feature module labels.
# @param K Integer. Number of cell populations.
# @param L Integer. Number of feature modules.
.cCGDecomposeCounts <- function(counts, s, z, y, K, L) {
nS <- length(unique(s))
mCPByS <- matrix(as.integer(table(factor(z, levels = seq(K)), s)),
ncol = nS
)
nTSByC <- .rowSumByGroup(counts, group = y, L = L)
nTSByCP <- .colSumByGroup(nTSByC, group = z, K = K)
nCP <- as.integer(colSums(nTSByCP))
nByG <- as.integer(rowSums(counts))
nByC <- as.integer(colSums(counts))
nByTS <- as.integer(.rowSumByGroup(matrix(nByG, ncol = 1),
group = y, L = L
))
nGByTS <- tabulate(y, L) + 1 ## Add pseudogene to each module
nGByCP <- .colSumByGroup(counts, group = z, K = K)
nG <- nrow(counts)
nM <- ncol(counts)
return(list(
mCPByS = mCPByS,
nTSByC = nTSByC,
nTSByCP = nTSByCP,
nCP = nCP,
nByG = nByG,
nByC = nByC,
nByTS = nByTS,
nGByTS = nGByTS,
nGByCP = nGByCP,
nM = nM,
nG = nG,
nS = nS
))
}
.reorderCeldaCG <- function(counts, res) {
# Reorder K
if (params(res)$K > 2 & isTRUE(length(unique(celdaClusters(res)$z)) > 1)) {
res@clusters$z <- as.integer(as.factor(celdaClusters(res)$z))
fm <- factorizeMatrix(counts, res, type = "posterior")
uniqueZ <- sort(unique(celdaClusters(res)$z))
d <- .cosineDist(fm$posterior$cellPopulation[, uniqueZ])
h <- stats::hclust(d, method = "complete")
res <- .recodeClusterZ(res, from = h$order, to = seq(length(h$order)))
}
# Reorder L
if (params(res)$L > 2 & isTRUE(length(unique(celdaClusters(res)$y)) > 1)) {
res@clusters$y <- as.integer(as.factor(celdaClusters(res)$y))
fm <- factorizeMatrix(counts, res, type = "posterior")
uniqueY <- sort(unique(celdaClusters(res)$y))
cs <- prop.table(t(fm$posterior$cellPopulation[uniqueY, ]), 2)
d <- .cosineDist(cs)
h <- stats::hclust(d, method = "complete")
res <- .recodeClusterY(res, from = h$order, to = seq(length(h$order)))
}
return(res)
}
.prepareCountsForDimReductionCeldaCG <- function(sce,
useAssay,
maxCells,
minClusterSize,
modules,
normalize,
scaleFactor,
transformationFun) {
counts <- SummarizedExperiment::assay(sce, i = useAssay)
counts <- .processCounts(counts)
## Checking if maxCells and minClusterSize will work
if (!is.null(maxCells)) {
if ((maxCells < ncol(counts)) &
(maxCells / minClusterSize <
S4Vectors::metadata(sce)$celda_parameters$K)) {
stop("Cannot distribute ",
maxCells,
" cells among ",
S4Vectors::metadata(sce)$celda_parameters$K,
" clusters while maintaining a minumum of ",
minClusterSize,
" cells per cluster. Try increasing 'maxCells' or",
" decreasing 'minClusterSize'.")
}
} else {
maxCells <- ncol(counts)
}
fm <- .factorizeMatrixCelda_CG(sce, useAssay, type = "counts")
modulesToUse <- seq(nrow(fm$counts$cell))
if (!is.null(modules)) {
if (!all(modules %in% modulesToUse)) {
stop("'modules' must be a vector of numbers between 1 and ",
modulesToUse,
".")
}
modulesToUse <- modules
}
## Select a subset of cells to sample if greater than 'maxCells'
totalCellsToRemove <- ncol(counts) - maxCells
zInclude <- rep(TRUE, ncol(counts))
if (totalCellsToRemove > 0) {
zTa <- tabulate(SummarizedExperiment::colData(sce)$celda_cell_cluster,
S4Vectors::metadata(sce)$celda_parameters$K)
## Number of cells that can be sampled from each cluster without
## going below the minimum threshold
clusterCellsToSample <- zTa - minClusterSize
clusterCellsToSample[clusterCellsToSample < 0] <- 0
## Number of cells to sample after exluding smaller clusters
## Rounding can cause number to be off by a few, so ceiling is used
## with a second round of subtraction
clusterNToSample <- ceiling((clusterCellsToSample /
sum(clusterCellsToSample)) * totalCellsToRemove)
diff <- sum(clusterNToSample) - totalCellsToRemove
clusterNToSample[which.max(clusterNToSample)] <-
clusterNToSample[which.max(clusterNToSample)] - diff
## Perform sampling for each cluster
for (i in which(clusterNToSample > 0)) {
zInclude[sample(
which(SummarizedExperiment::colData(sce)$celda_cell_cluster ==
i),
clusterNToSample[i]
)] <- FALSE
}
}
cellIx <- which(zInclude)
norm <- t(normalizeCounts(fm$counts$cell[modulesToUse, cellIx],
normalize = normalize,
scaleFactor = scaleFactor,
transformationFun = transformationFun))
return(list(norm = norm, cellIx = cellIx))
}
.createSCEceldaCG <- function(celdaCGMod,
sce,
xClass,
useAssay,
algorithm,
stopIter,
maxIter,
splitOnIter,
splitOnLast,
nchains,
zInitialize,
yInitialize,
zInit,
yInit,
logfile,
verbose) {
# add metadata
S4Vectors::metadata(sce)[["celda_parameters"]] <- list(
model = "celda_CG",
xClass = xClass,
useAssay = useAssay,
sampleLevels = celdaCGMod@names$sample,
K = celdaCGMod@params$K,
L = celdaCGMod@params$L,
alpha = celdaCGMod@params$alpha,
beta = celdaCGMod@params$beta,
delta = celdaCGMod@params$delta,
gamma = celdaCGMod@params$gamma,
algorithm = algorithm,
stopIter = stopIter,
maxIter = maxIter,
splitOnIter = splitOnIter,
splitOnLast = splitOnLast,
seed = celdaCGMod@params$seed,
nchains = nchains,
zInitialize = zInitialize,
yInitialize = yInitialize,
countChecksum = celdaCGMod@params$countChecksum,
zInit = zInit,
yInit = yInit,
logfile = logfile,
verbose = verbose,
completeLogLik = celdaCGMod@completeLogLik,
finalLogLik = celdaCGMod@finalLogLik,
cellClusterLevels = sort(unique(celdaClusters(celdaCGMod)$z)),
featureModuleLevels = sort(unique(celdaClusters(celdaCGMod)$y)))
SummarizedExperiment::rowData(sce)["rownames"] <- celdaCGMod@names$row
SummarizedExperiment::colData(sce)["colnames"] <-
celdaCGMod@names$column
SummarizedExperiment::colData(sce)["celda_sample_label"] <-
celdaCGMod@sampleLabel
SummarizedExperiment::colData(sce)["celda_cell_cluster"] <-
celdaClusters(celdaCGMod)$z
SummarizedExperiment::rowData(sce)["celda_feature_module"] <-
celdaClusters(celdaCGMod)$y
return(sce)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.