R/loglikelihood.R

Defines functions .logLikelihoodcelda_G .logLikelihoodcelda_CG .logLikelihoodcelda_C

#' @title Calculate the Log-likelihood of a celda model
#' @description Calculate the log-likelihood for cell population
#'  and feature module cluster assignments on the count matrix, per celda model.
#' @param x A \linkS4class{SingleCellExperiment} object returned by
#'  \link{celda_C}, \link{celda_G}, or \link{celda_CG}, with the matrix
#'  located in the \code{useAssay} assay slot.
#'  Rows represent features and columns represent cells.
#' @param useAssay A string specifying which \link{assay}
#'  slot to use. Default "counts".
#' @param altExpName The name for the \link{altExp} slot
#'  to use. Default "featureSubset".
#' @param celdaMod celda model object. Ignored if \code{x} is a
#'  \linkS4class{SingleCellExperiment} object.
#' @param ... Ignored. Placeholder to prevent check warning.
#' @return The log-likelihood of the cluster assignment for the
#'  provided \linkS4class{SingleCellExperiment}.
#' @seealso `celda_C()` for clustering cells
#' @export
setGeneric("logLikelihood", function(x, celdaMod, ...) {
    standardGeneric("logLikelihood")
})


#' @rdname logLikelihood
#' @examples
#' data(sceCeldaC, sceCeldaCG)
#' loglikC <- logLikelihood(sceCeldaC)
#' loglikCG <- logLikelihood(sceCeldaCG)
#' @export
setMethod("logLikelihood", signature(x = "SingleCellExperiment"),
    function(x, useAssay = "counts", altExpName = "featureSubset") {
        altExp <- SingleCellExperiment::altExp(x, altExpName)

        counts <- SummarizedExperiment::assay(altExp, i = useAssay)
        sampleLabel <- sampleLabel(x, altExpName = altExpName)
        z <- celdaClusters(x, altExpName = altExpName)
        y <- celdaModules(x, altExpName = altExpName)
        K <- S4Vectors::metadata(altExp)$celda_parameters$K
        L <- S4Vectors::metadata(altExp)$celda_parameters$L
        alpha <- S4Vectors::metadata(altExp)$celda_parameters$alpha
        beta <- S4Vectors::metadata(altExp)$celda_parameters$beta
        delta <- S4Vectors::metadata(altExp)$celda_parameters$delta
        gamma <- S4Vectors::metadata(altExp)$celda_parameters$gamma

        if (celdaModel(x, altExpName = altExpName) == "celda_C") {
            ll <- .logLikelihoodcelda_C(counts = counts,
                sampleLabel = sampleLabel,
                z = z,
                K = K,
                alpha = alpha,
                beta = beta)
        } else if (celdaModel(x, altExpName = altExpName) == "celda_CG") {
            ll <- .logLikelihoodcelda_CG(counts = counts,
                sampleLabel = sampleLabel,
                z = z,
                y = y,
                K = K,
                L = L,
                alpha = alpha,
                beta = beta,
                delta = delta,
                gamma = gamma)
        } else if (celdaModel(x, altExpName = altExpName) == "celda_G") {
            ll <- .logLikelihoodcelda_G(counts = counts,
                y = y,
                L = L,
                beta = beta,
                delta = delta,
                gamma = gamma)
        } else {
            stop("S4Vectors::metadata(altExp(x, altExpName))$",
                "celda_parameters$model must be",
                " one of 'celda_C', 'celda_G', or 'celda_CG'!")
        }
        return(ll)
    }
)


#' @rdname logLikelihood
#' @export
setMethod("logLikelihood", signature(x = "matrix", celdaMod = "celda_C"),
    function(x, celdaMod) {
        sampleLabel <- sampleLabel(celdaMod)
        z <- celdaClusters(celdaMod)$z
        K <- params(celdaMod)$K
        alpha <- params(celdaMod)$alpha
        beta <- params(celdaMod)$beta

        ll <- .logLikelihoodcelda_C(counts = x,
            sampleLabel = sampleLabel,
            z = z,
            K = K,
            alpha = alpha,
            beta = beta)
        return(ll)
    }
)


#' @rdname logLikelihood
#' @export
setMethod("logLikelihood", signature(x = "matrix", celdaMod = "celda_G"),
    function(x, celdaMod) {
        y <- celdaClusters(celdaMod)$y
        L <- params(celdaMod)$L
        beta <- params(celdaMod)$beta
        delta <- params(celdaMod)$delta
        gamma <- params(celdaMod)$gamma

        ll <- .logLikelihoodcelda_G(counts = x,
            y = y,
            L = L,
            beta = beta,
            delta = delta,
            gamma = gamma)
        return(ll)
    }
)


#' @rdname logLikelihood
#' @export
setMethod("logLikelihood", signature(x = "matrix", celdaMod = "celda_CG"),
    function(x, celdaMod) {
        sampleLabel <- sampleLabel(celdaMod)
        z <- celdaClusters(celdaMod)$z
        y <- celdaClusters(celdaMod)$y
        K <- params(celdaMod)$K
        L <- params(celdaMod)$L
        alpha <- params(celdaMod)$alpha
        beta <- params(celdaMod)$beta
        delta <- params(celdaMod)$delta
        gamma <- params(celdaMod)$gamma

        ll <- .logLikelihoodcelda_CG(counts = x,
            sampleLabel = sampleLabel,
            z = z,
            y = y,
            K = K,
            L = L,
            alpha = alpha,
            beta = beta,
            delta = delta,
            gamma = gamma)
        return(ll)
    }
)


#' @title Get log-likelihood history
#' @description Retrieves the complete log-likelihood from all iterations of
#'  Gibbs sampling used to generate a celda model.
#' @param x A \linkS4class{SingleCellExperiment} object
#'  returned by \link{celda_C}, \link{celda_G}, or \link{celda_CG}, or a celda
#'  model object.
#' @param altExpName The name for the \link{altExp} slot
#'  to use. Default "featureSubset".
#' @param ... Ignored. Placeholder to prevent check warning.
#' @return Numeric. The log-likelihood at each step of Gibbs sampling used to
#'  generate the model.
#' @export
setGeneric(
    "logLikelihoodHistory",
    function(x, ...) {
        standardGeneric("logLikelihoodHistory")
    }
)


#' @rdname logLikelihoodHistory
#' @examples
#' data(sceCeldaCG)
#' logLikelihoodHistory(sceCeldaCG)
#' @export
setMethod("logLikelihoodHistory",
    signature(x = "SingleCellExperiment"),
    function(x, altExpName = "featureSubset") {
        altExp <- SingleCellExperiment::altExp(x, altExpName)
        cll <- S4Vectors::metadata(altExp)$celda_parameters$completeLogLik
        return(cll)
    }
)


#' @rdname logLikelihoodHistory
#' @examples
#' data(celdaCGMod)
#' logLikelihoodHistory(celdaCGMod)
#' @export
setMethod("logLikelihoodHistory",
    signature(x = "celdaModel"),
    function(x) {
        cll <- x@completeLogLik
        return(cll)
    }
)


#' @title Get the log-likelihood
#' @description Retrieves the final log-likelihood from all iterations of Gibbs
#'  sampling used to generate a celdaModel.
#' @return Numeric. The log-likelihood at the final step of Gibbs sampling used
#'  to generate the model.
#' @param x A \linkS4class{SingleCellExperiment} object
#'  returned by \link{celda_C}, \link{celda_G}, or \link{celda_CG}, or a celda
#'  model object.
#' @param altExpName The name for the \link{altExp} slot
#'  to use. Default "featureSubset".
#' @param ... Ignored. Placeholder to prevent check warning.
#' @export
setGeneric(
    "bestLogLikelihood",
    function(x, ...) {
        standardGeneric("bestLogLikelihood")
    }
)


#' @rdname bestLogLikelihood
#' @examples
#' data(sceCeldaCG)
#' bestLogLikelihood(sceCeldaCG)
#' @export
setMethod("bestLogLikelihood",
    signature(x = "SingleCellExperiment"),
    function(x, altExpName = "featureSubset") {
        altExp <- SingleCellExperiment::altExp(x, altExpName)
        fll <- S4Vectors::metadata(altExp)$celda_parameters$finalLogLik
        return(fll)
    }
)


#' @rdname bestLogLikelihood
#' @examples
#' data(celdaCGMod)
#' bestLogLikelihood(celdaCGMod)
#' @export
setMethod("bestLogLikelihood",
    signature(x = "celdaModel"),
    function(x) {
        fll <- x@finalLogLik
        return(fll)
    }
)


.logLikelihoodcelda_C <- function(counts, sampleLabel, z, K, alpha, beta) {
    if (sum(z > K) > 0) {
        stop("Assigned value of cell cluster greater than the total number of",
            " cell clusters!")
    }
    sampleLabel <- .processSampleLabels(sampleLabel, ncol(counts))
    s <- as.integer(sampleLabel)
    p <- .cCDecomposeCounts(counts, s, z, K)
    final <- .cCCalcLL(
        mCPByS = p$mCPByS,
        nGByCP = p$nGByCP,
        s = s,
        z = z,
        K = K,
        nS = p$nS,
        nG = p$nG,
        alpha = alpha,
        beta = beta
    )
    return(final)
}


.logLikelihoodcelda_CG <- function(counts,
    sampleLabel,
    z,
    y,
    K,
    L,
    alpha,
    beta,
    delta,
    gamma) {

    if (sum(z > K) > 0) {
        stop("Assigned value of cell cluster greater than the total number of",
            " cell clusters!")
    }
    if (sum(y > L) > 0) {
        stop("Assigned value of feature module greater than the total number",
            " of feature modules!")
    }

    sampleLabel <- .processSampleLabels(sampleLabel, ncol(counts))
    s <- as.integer(sampleLabel)
    p <- .cCGDecomposeCounts(counts, s, z, y, K, L)
    final <- .cCGCalcLL(
        K = K,
        L = L,
        mCPByS = p$mCPByS,
        nTSByCP = p$nTSByCP,
        nByG = p$nByG,
        nByTS = p$nByTS,
        nGByTS = p$nGByTS,
        nS = p$nS,
        nG = p$nG,
        alpha = alpha,
        beta = beta,
        delta = delta,
        gamma = gamma)
    return(final)
}


.logLikelihoodcelda_G <- function(counts, y, L, beta, delta, gamma) {
    if (sum(y > L) > 0) {
        stop("Assigned value of feature module greater than the total number",
            " of feature modules!")
    }
    p <- .cGDecomposeCounts(counts = counts, y = y, L = L)
    final <- .cGCalcLL(
        nTSByC = p$nTSByC,
        nByTS = p$nByTS,
        nByG = p$nByG,
        nGByTS = p$nGByTS,
        nM = p$nM,
        nG = p$nG,
        L = L,
        beta = beta,
        delta = delta,
        gamma = gamma
    )

    return(final)
}

Try the celda package in your browser

Any scripts or data that you put into this service are public.

celda documentation built on Nov. 8, 2020, 8:24 p.m.