Description Usage Arguments Value Examples
Calculate values of the CU expressivity measure
for every sequence in the given codonTable object.
The following methods are implemented:
MELP, CU expressivity measure based on
Measure Independent of Length and Composition
Supek & Vlahovicek (2005),
E, gene expression measure (E)
Karlin and Mrazek (2000),
CAI, Codon Adaptation Index (CAI)
Sharp and Li (1987),
Fop, frequency of optimal codons (Fop)
Ikemura (1981),
GCB, gene codon bias (GCB)
Merkl (2003).
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 | MELP(cTobject, subsets = list(), ribosomal = FALSE,
id_or_name2 = "1", alt.init = TRUE, stop.rm = FALSE,
filtering = "none", len.threshold = 80)
## S4 method for signature 'codonTable'
MELP(cTobject, subsets = list(),
ribosomal = FALSE, id_or_name2 = "1", alt.init = TRUE,
stop.rm = FALSE, filtering = "none", len.threshold = 80)
E(cTobject, subsets = list(), ribosomal = FALSE, id_or_name2 = "1",
alt.init = TRUE, stop.rm = FALSE, filtering = "none",
len.threshold = 80)
## S4 method for signature 'codonTable'
E(cTobject, subsets = list(), ribosomal = FALSE,
id_or_name2 = "1", alt.init = TRUE, stop.rm = FALSE,
filtering = "none", len.threshold = 80)
CAI(cTobject, subsets = list(), ribosomal = FALSE, id_or_name2 = "1",
alt.init = TRUE, stop.rm = FALSE, filtering = "none",
len.threshold = 80)
## S4 method for signature 'codonTable'
CAI(cTobject, subsets = list(),
ribosomal = FALSE, id_or_name2 = "1", alt.init = TRUE,
stop.rm = FALSE, filtering = "none", len.threshold = 80)
Fop(cTobject, subsets = list(), ribosomal = FALSE, id_or_name2 = "1",
alt.init = TRUE, stop.rm = FALSE, filtering = "none",
len.threshold = 80)
## S4 method for signature 'codonTable'
Fop(cTobject, subsets = list(),
ribosomal = FALSE, id_or_name2 = "1", alt.init = TRUE,
stop.rm = FALSE, filtering = "none", len.threshold = 80)
GCB(cTobject, seed = logical(), ribosomal = FALSE, perc = 0.05,
id_or_name2 = "1", alt.init = TRUE, stop.rm = FALSE,
filtering = "none", len.threshold = 80)
## S4 method for signature 'codonTable'
GCB(cTobject, seed = logical(),
ribosomal = FALSE, perc = 0.05, id_or_name2 = "1",
alt.init = TRUE, stop.rm = FALSE, filtering = "none",
len.threshold = 80)
|
cTobject |
A |
subsets |
A (named) list of logical vectors, the length of each equal
to |
ribosomal |
Logical, if |
id_or_name2 |
A single string that uniquely identifies the genetic code to extract.
Should be one of the values in the |
alt.init |
logical, whether to use alternative initiation codons.
Default is |
stop.rm |
Logical, whether to remove stop codons. Default is
|
filtering |
Character vector, one of |
len.threshold |
Optional numeric, specifying sequence length, in codons, used for filtering. |
seed |
A logical vector, of the length equal to
|
perc |
percent of top ranking genes to be used as a target set for the next iteration of the algorithm that calculates GCB. Default is 0.05. |
A matrix (for GCB a numeric vector) with CU expressivity values
for every specified subset (subsets, self,
ribosomal) in columns.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 | # load example DNA sequences
exampledir <- system.file("extdata", package = "coRdon")
cT <- codonTable(readSet(exampledir))
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# In the examples below, MELP values are calculated for all sequences;
# any other CU expressivity measure can be caluclated in the same way,
# the only exception being GCB which takes `seed` instead of `subset`
# parameter. (The exemples for GCB calculation are further below).
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# calculate MELP with respect to the CU
# of ribosomal genes among the example DNA sequences
melp <- MELP(cT, ribosomal = TRUE)
head(melp)
# calculate MELP distance with respect to the average CU
# of the first 20 example DNA sequences
# (i.e. the first half of the example DNA set)
melp <- MELP(cT, subsets = list(half = c(rep(TRUE, 20), rep(FALSE, 20))))
# alternatively, you can specify codonTable as a subset
halfcT <- codonTable(codonCounts(cT)[1:20,])
melp2 <- MELP(cT, subsets = list(half = halfcT))
all.equal(melp, melp2) # TRUE
# filtering
MELP(cT, ribosomal = TRUE,
filtering = "hard", len.threshold = 80) # MELP for 9 sequences
# (note that, accidentally,
# all are ribosomal)
sum(getlen(cT) > 80) # 9 sequences are longer than 80 codons
melp1 <- MELP(cT, ribosomal = TRUE, filtering = "none") # no filtering
melp2 <- MELP(cT, ribosomal = TRUE, filtering = "soft") # warning
all.equal(melp1, melp2) # TRUE
# options for genetic code
melp <- MELP(cT, ribosomal = TRUE,
stop.rm = TRUE) # don't use stop codons in calculation
melp <- MELP(cT, ribosomal = TRUE,
alt.init = FALSE) # don't use alternative start codons
melp <- MELP(cT, ribosomal = TRUE,
id_or_name2 = "2") # use different genetic code, for help
# see `?Biostrings::GENETIC_CODE`
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# GCB calculationd
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# calculate GCB with CU of ribosomal genes among the example DNA sequences
# used as a target (seed) in the first iteration of the algorithm
gcb <- GCB(cT, ribosomal = TRUE)
head(gcb)
# calculate GCB distance with the first 20 example DNA sequences
# (i.e. the first half of the example DNA set) as a seed
gcb <- GCB(cT, seed = c(rep(TRUE, 20), rep(FALSE, 20)))
# alternatively, you can specify codonTable as a seed
halfcT <- codonTable(codonCounts(cT)[1:20,])
gcb2 <- GCB(cT, seed = halfcT)
all.equal(gcb, gcb2) # TRUE
# options for genetic code
gcb <- GCB(cT, ribosomal = TRUE,
stop.rm = TRUE) # don't use stop codons in calculation
gcb <- GCB(cT, ribosomal = TRUE,
alt.init = FALSE) # don't use alternative start codons
gcb <- GCB(cT, ribosomal = TRUE,
id_or_name2 = "2") # use different genetic code, for help
# see `?Biostrings::GENETIC_CODE`
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.