Description Usage Arguments Value Examples
Calculate values of the codon usage (CU) measure
for every sequence in the given codonTable
object.
The following methods are implemented:
MILC
, Measure Independent of Length and Composition
Supek & Vlahovicek (2005),
B
, codon usage bias (B)
Karlin et al. (2001),
ENC
, effective number of codons (ENC)
Wright (1990).
ENCprime
, effective number of codons prime (ENC')
Novembre (2002),
MCB
, maximum-likelihood codon bias (MCB)
Urrutia and Hurst (2001),
SCUO
, synonymous codon usage eorderliness (SCUO)
Wan et al. (2004).
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 | MILC(cTobject, subsets = list(), self = TRUE, ribosomal = FALSE,
id_or_name2 = "1", alt.init = TRUE, stop.rm = FALSE,
filtering = "none", len.threshold = 80)
## S4 method for signature 'codonTable'
MILC(cTobject, subsets = list(), self = TRUE,
ribosomal = FALSE, id_or_name2 = "1", alt.init = TRUE,
stop.rm = FALSE, filtering = "none", len.threshold = 80)
B(cTobject, subsets = list(), self = TRUE, ribosomal = FALSE,
id_or_name2 = "1", alt.init = TRUE, stop.rm = FALSE,
filtering = "none", len.threshold = 80)
## S4 method for signature 'codonTable'
B(cTobject, subsets = list(), self = TRUE,
ribosomal = FALSE, id_or_name2 = "1", alt.init = TRUE,
stop.rm = FALSE, filtering = "none", len.threshold = 80)
MCB(cTobject, subsets = list(), self = TRUE, ribosomal = FALSE,
id_or_name2 = "1", alt.init = TRUE, stop.rm = FALSE,
filtering = "none", len.threshold = 80)
## S4 method for signature 'codonTable'
MCB(cTobject, subsets = list(), self = TRUE,
ribosomal = FALSE, id_or_name2 = "1", alt.init = TRUE,
stop.rm = FALSE, filtering = "none", len.threshold = 80)
ENCprime(cTobject, subsets = list(), self = TRUE, ribosomal = FALSE,
id_or_name2 = "1", alt.init = TRUE, stop.rm = TRUE,
filtering = "none", len.threshold = 80)
## S4 method for signature 'codonTable'
ENCprime(cTobject, subsets = list(),
self = TRUE, ribosomal = FALSE, id_or_name2 = "1",
alt.init = TRUE, stop.rm = TRUE, filtering = "none",
len.threshold = 80)
ENC(cTobject, id_or_name2 = "1", alt.init = TRUE, stop.rm = TRUE,
filtering = "none", len.threshold = 80)
## S4 method for signature 'codonTable'
ENC(cTobject, id_or_name2 = "1",
alt.init = TRUE, stop.rm = TRUE, filtering = "none",
len.threshold = 80)
SCUO(cTobject, id_or_name2 = "1", alt.init = TRUE, stop.rm = FALSE,
filtering = "none", len.threshold = 80)
## S4 method for signature 'codonTable'
SCUO(cTobject, id_or_name2 = "1",
alt.init = TRUE, stop.rm = FALSE, filtering = "none",
len.threshold = 80)
|
cTobject |
A |
subsets |
A (named) list of logical vectors, the length of each equal
to |
self |
Logical, if |
ribosomal |
Logical, if |
id_or_name2 |
A single string that uniquely identifies the genetic code to extract.
Should be one of the values in the |
alt.init |
logical, whether to use alternative initiation codons.
Default is |
stop.rm |
Logical, whether to remove stop codons. Default is
|
filtering |
Character vector, one of |
len.threshold |
Optional numeric, specifying sequence length, in codons, used for filtering. |
A matrix or a numeric vector with CU measure values.
For MILC
, B
, ENCprime
, the matrix has a column
with values for every specified subset
(subsets
, self
, ribosomal
).
A numeric vector for ENC
and SCUO
.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 | # load example DNA sequences
exampledir <- system.file("extdata", package = "coRdon")
cT <- codonTable(readSet(exampledir))
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# In the examples below, MILC values are calculated for all sequences;
# B and ENCprime can be caluclated in the same way.
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# calculate MILC distance to the average CU of the example DNA sequences
milc <- MILC(cT)
head(milc)
# also calculate MILC distance to the average CU
# of ribosomal genes among the example DNA sequences
milc <- MILC(cT, ribosomal = TRUE)
head(milc)
# calculate MILC distance to the average CU
# of the first 20 example DNA sequences
# (i.e. the first half of the example DNA set)
milc <- MILC(cT, self = FALSE,
subsets = list(half = c(rep(TRUE, 20), rep(FALSE, 20))))
# alternatively, you can specify codonTable as a subset
halfcT <- codonTable(codonCounts(cT)[1:20,])
milc2 <- MILC(cT, self = FALSE, subsets = list(half = halfcT))
all.equal(milc, milc2) # TRUE
# filtering
MILC(cT, filtering = "hard", len.threshold = 80) # MILC for 9 sequences
sum(getlen(cT) > 80) # 9 sequences are longer than 80 codons
milc1 <- MILC(cT, filtering = "none") # no filtering
milc2 <- MILC(cT, filtering = "soft") # warning
all.equal(milc1, milc2) # TRUE
# options for genetic code
milc <- MILC(cT, stop.rm = TRUE) # don't use stop codons in calculation
milc <- MILC(cT, alt.init = FALSE) # don't use alternative start codons
milc <- MILC(cT, id_or_name2 = "2") # use different genetic code, for help
# see `?Biostrings::GENETIC_CODE`
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# In the examples below, ENC values are calculated for all sequences;
# SCUO values can be caluclated in the same way.
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# calculate ENC
enc <- ENC(cT)
head(enc)
# filtering
ENC(cT, filtering = "hard", len.threshold = 80) # ENC for 9 sequences
sum(getlen(cT) > 80) # 9 sequences are longer than 80 codons
enc1 <- ENC(cT, filtering = "none") # no filtering
enc2 <- ENC(cT, filtering = "soft") # warning
all.equal(enc1, enc2) # TRUE
# options for genetic code
enc <- ENC(cT, stop.rm = TRUE) # don't use stop codons in calculation
enc <- ENC(cT, alt.init = FALSE) # don't use alternative start codons
enc <- ENC(cT, id_or_name2 = "2") # use different genetic code, for help
# see `?Biostrings::GENETIC_CODE`
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.