To discovery smaller scale, but highly correlated cellular events that may be of great biological relevance, co-expressed gene set enrichment analysis, cogena, clusters gene expression profiles (coExp) and then make enrichment analysis for each clusters (clEnrich) based on hyper-geometric test. The heatmapCluster and heatmapPEI can visualise the results. See vignette for the detailed workflow.
https://github.com/zhilongjia/cogena
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 | ## A quick start
# Loading the examplar dataseat
data(Psoriasis)
# Clustering the gene expression profiling
clMethods <- c("hierarchical","kmeans","diana","fanny","som","model","sota","pam","clara","agnes")
genecl_result <- coExp(DEexprs, nClust=5:6, clMethods=clMethods,
metric="correlation", method="complete", ncore=2, verbose=TRUE)
# Gene set used
annofile <- system.file("extdata", "c2.cp.kegg.v7.01.symbols.gmt.xz", package="cogena")
# Enrichment analysis for clusters
clen_res <- clEnrich(genecl_result, annofile=annofile, sampleLabel=sampleLabel)
summary(clen_res)
# Visualisation
heatmapCluster(clen_res, "hierarchical", "6")
heatmapPEI(clen_res, "hierarchical", "6", printGS=FALSE)
# Obtain genes in a certain cluster
head(geneInCluster(clen_res, "hierarchical", "6", "2"))
## The end
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.