Nothing
# This checks the overlap summarization functions, relative to the expected values.
# library(testthat); library(csaw); source("setup.R"); source("test-overlap.R")
chromos <- c(A=1000, B=2000)
set.seed(130000)
test_that("combineOverlaps works correctly", {
for (nreg in c(2, 10)) {
for (nwin in c(1, 10, 100)) {
regions <- generateWindows(chromos, nreg, 500)
windows <- generateWindows(chromos, nwin, 50)
olap <- findOverlaps(regions, windows)
ns <- length(windows)
tab <- data.frame(logFC=rnorm(ns), PValue=rbeta(ns, 1, 3), logCPM=rnorm(ns))
# Straight-up comparison to combineTests, after discarding all NA's.
output <- combineOverlaps(olap, tab)
refstats <- combineTests(queryHits(olap), tab[subjectHits(olap),])
refstats$rep.test <- subjectHits(olap)[refstats$rep.test]
expect_identical(output[!is.na(output$PValue),], refstats)
# Testing with weights.
test.weight <- runif(ns)
output <- combineOverlaps(olap, tab, i.weight=test.weight)
refstats <- combineTests(queryHits(olap), tab[subjectHits(olap),], weight=test.weight[subjectHits(olap)])
refstats$rep.test <- subjectHits(olap)[refstats$rep.test]
expect_identical(output[!is.na(output$PValue),], refstats)
# More weight testing, where o.weight is constructed from the weight for each i.weight.
output2 <- combineOverlaps(olap, tab, o.weight=test.weight[subjectHits(olap)])
expect_identical(output, output2)
}
}
# Testing with empty inputs.
out <- combineOverlaps(Hits(), data.frame(logFC=numeric(0), PValue=numeric(0), logCPM=numeric(0)))
expect_identical(nrow(out), 0L)
expect_identical(out$PValue, numeric(0))
})
set.seed(130001)
test_that("getBestOverlaps works correctly", {
for (nreg in c(2, 10)) {
for (nwin in c(1, 10, 100)) {
regions <- generateWindows(chromos, nreg, 500)
windows <- generateWindows(chromos, nwin, 50)
olap <- findOverlaps(regions, windows)
ns <- length(windows)
tab <- data.frame(logFC=rnorm(ns), PValue=rbeta(ns, 1, 3), logCPM=rnorm(ns))
output <- getBestOverlaps(olap, tab)
refstats <- getBestTest(queryHits(olap), tab[subjectHits(olap),])
refstats$rep.test <- subjectHits(olap)[refstats$rep.test]
expect_identical(output[!is.na(output$PValue),], refstats)
# Testing with weights.
test.weight <- runif(ns)
output <- getBestOverlaps(olap, tab, i.weight=test.weight)
refstats <- getBestTest(queryHits(olap), tab[subjectHits(olap),], weight=test.weight[subjectHits(olap)])
refstats$rep.test <- subjectHits(olap)[refstats$rep.test]
expect_identical(output[!is.na(output$PValue),], refstats)
# More weight testing.
output2 <- getBestOverlaps(olap, tab, o.weight=test.weight[subjectHits(olap)])
expect_identical(output, output2)
}
}
# Testing with empty inputs.
out <- getBestOverlaps(Hits(), data.frame(logFC=numeric(0), PValue=numeric(0), logCPM=numeric(0)))
expect_identical(nrow(out), 0L)
expect_identical(out$PValue, numeric(0))
})
set.seed(130002)
test_that("empiricalOverlaps works correctly", {
for (nreg in c(2, 10)) {
for (nwin in c(1, 10, 100)) {
regions <- generateWindows(chromos, nreg, 500)
windows <- generateWindows(chromos, nwin, 50)
olap <- findOverlaps(regions, windows)
ns <- length(windows)
tab <- data.frame(logFC=rnorm(ns), PValue=rbeta(ns, 1, 3), logCPM=rnorm(ns))
# Straight-up comparison to empiricalFDR, after discarding all NA's.
output <- empiricalOverlaps(olap, tab)
refstats <- empiricalFDR(queryHits(olap), tab[subjectHits(olap),])
refstats$rep.test <- subjectHits(olap)[refstats$rep.test]
expect_identical(output[!is.na(output$PValue),], refstats)
# Testing with weights.
test.weight <- runif(ns)
output <- empiricalOverlaps(olap, tab, i.weight=test.weight)
refstats <- empiricalFDR(queryHits(olap), tab[subjectHits(olap),], weight=test.weight[subjectHits(olap)])
refstats$rep.test <- subjectHits(olap)[refstats$rep.test]
expect_identical(output[!is.na(output$PValue),], refstats)
# More weight testing, where o.weight is constructed from the weight for each i.weight.
output2 <- empiricalOverlaps(olap, tab, o.weight=test.weight[subjectHits(olap)])
expect_identical(output, output2)
}
}
# Testing with empty inputs.
out <- empiricalOverlaps(Hits(), data.frame(logFC=numeric(0), PValue=numeric(0), logCPM=numeric(0)))
expect_identical(nrow(out), 0L)
expect_identical(out$PValue, numeric(0))
})
set.seed(1300021)
test_that("mixedOverlaps works correctly", {
for (nreg in c(2, 10)) {
for (nwin in c(1, 10, 100)) {
regions <- generateWindows(chromos, nreg, 500)
windows <- generateWindows(chromos, nwin, 50)
olap <- findOverlaps(regions, windows)
ns <- length(windows)
tab <- data.frame(logFC=rnorm(ns), PValue=rbeta(ns, 1, 3), logCPM=rnorm(ns))
# Straight-up comparison to combineTests, after discarding all NA's.
output <- mixedOverlaps(olap, tab)
refstats <- mixedClusters(queryHits(olap), tab[subjectHits(olap),])
refstats$rep.up.test <- subjectHits(olap)[refstats$rep.up.test]
refstats$rep.down.test <- subjectHits(olap)[refstats$rep.down.test]
expect_identical(output[!is.na(output$PValue),], refstats)
# Testing with weights.
test.weight <- runif(ns)
output <- mixedOverlaps(olap, tab, i.weight=test.weight)
refstats <- mixedClusters(queryHits(olap), tab[subjectHits(olap),], weight=test.weight[subjectHits(olap)])
refstats$rep.up.test <- subjectHits(olap)[refstats$rep.up.test]
refstats$rep.down.test <- subjectHits(olap)[refstats$rep.down.test]
expect_identical(output[!is.na(output$PValue),], refstats)
# More weight testing, where o.weight is constructed from the weight for each i.weight.
output2 <- mixedOverlaps(olap, tab, o.weight=test.weight[subjectHits(olap)])
expect_identical(output, output2)
}
}
# Testing with empty inputs.
out <- mixedOverlaps(Hits(), data.frame(logFC=numeric(0), PValue=numeric(0), logCPM=numeric(0)))
expect_identical(nrow(out), 0L)
expect_identical(out$PValue, numeric(0))
})
set.seed(130003)
test_that("summitOverlaps works correctly", {
for (nreg in c(2, 10)) {
for (nwin in c(1, 10, 100)) {
regions <- generateWindows(chromos, nreg, 500)
windows <- generateWindows(chromos, nwin, 50)
olap <- findOverlaps(regions, windows)
ns <- length(windows)
tab <- data.frame(logFC=rnorm(ns), PValue=rbeta(ns, 1, 3), logCPM=rnorm(ns))
output <- getBestOverlaps(olap, tab)
# Checking summit calls.
re.weight <- summitOverlaps(olap, output$rep.test)
best.win <- output$rep.test[queryHits(olap)]
is.summit <- !is.na(best.win) & best.win==subjectHits(olap)
re.weight2a <- summitOverlaps(olap, o.summit=is.summit)
re.weight2b <- summitOverlaps(olap, o.summit=which(is.summit))
expect_identical(re.weight, re.weight2a)
expect_identical(re.weight, re.weight2b)
isummits <- rbinom(ns, 1, 0.1)==1L
re.weight3 <- summitOverlaps(olap, o.summit=isummits[subjectHits(olap)])
re.weight4 <- summitOverlaps(olap, i.summit=isummits)
expect_identical(re.weight3, re.weight4)
# Checking the core upweightSummit machinery itself.
by.region <- split(is.summit, queryHits(olap))
nu.weight <- lapply(by.region, FUN=function(x) {
N <- length(x)
output <- rep(1, N)
output[x] <- N/sum(x)
output
})
if (length(nu.weight)) {
expect_identical(re.weight, unlist(nu.weight, use.names=FALSE))
} else {
expect_identical(re.weight, numeric(0))
}
}
}
# Testing with empty inputs.
out <- summitOverlaps(Hits(), data.frame(logFC=numeric(0), PValue=numeric(0), logCPM=numeric(0)))
expect_identical(out, numeric(0))
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.