Description Usage Arguments Details Value See Also Examples
exomePeakCalling
call peaks of RNA modification from a MeRIP-seq data set.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 | exomePeakCalling(
merip_bams = NULL,
txdb = NULL,
bsgenome = NULL,
genome = NA,
mod_annot = NULL,
glm_type = c("DESeq2", "NB", "Poisson"),
background_method = c("Gaussian_mixture", "m6Aseq_prior", "manual", "all"),
manual_background = NULL,
correct_GC_bg = TRUE,
qtnorm = FALSE,
gff_dir = NULL,
fragment_length = 100,
binding_length = 25,
step_length = binding_length,
peak_width = fragment_length/2,
pc_count_cutoff = 5,
bg_count_cutoff = 50,
p_cutoff = 1e-05,
p_adj_cutoff = NULL,
log2FC_cutoff = 0,
consistent_peak = FALSE,
consistent_log2FC_cutoff = 0,
consistent_fdr_cutoff = 0.05,
alpha = 0.05,
p0 = 0.8,
parallel = FALSE,
bp_param = NULL
)
## S4 method for signature 'MeripBamFileList'
exomePeakCalling(
merip_bams = NULL,
txdb = NULL,
bsgenome = NULL,
genome = NA,
mod_annot = NULL,
glm_type = c("DESeq2", "NB", "Poisson"),
background_method = c("all", "Gaussian_mixture", "m6Aseq_prior", "manual"),
manual_background = NULL,
correct_GC_bg = TRUE,
qtnorm = FALSE,
gff_dir = NULL,
fragment_length = 100,
binding_length = 25,
step_length = binding_length,
peak_width = fragment_length/2,
pc_count_cutoff = 5,
bg_count_cutoff = 50,
p_cutoff = 1e-05,
p_adj_cutoff = NULL,
log2FC_cutoff = 1,
consistent_peak = FALSE,
consistent_log2FC_cutoff = 1,
consistent_fdr_cutoff = 0.05,
alpha = 0.05,
p0 = 0.8,
parallel = FALSE,
bp_param = NULL
)
|
merip_bams |
a |
txdb |
a If the |
bsgenome |
a If the |
genome |
a By default, the argument = NA, it should be provided when the |
mod_annot |
a If user provides the single based RNA modification annotation, exomePeak2 will perform reads count and (differential) modification quantification on the provided annotation. The single base annotation will be flanked by length = floor(fragment_length - binding_length/2) to account for the fragment length of the sequencing library. |
glm_type |
a
By default, the DESeq2 GLMs are fitted on the data set with > 1 biological replicates for both the IP and input samples, the Poisson GLM will be fitted otherwise. |
background_method |
a In order to accurately account for the technical variations, it is often neccessary to estimate the GC content linear effects on windows without modification signals (background). The following methods are supported in
|
manual_background |
a |
correct_GC_bg |
a If |
qtnorm |
a If |
gff_dir |
optional, a |
fragment_length |
a positive integer number for the expected fragment length in nucleotides; default |
binding_length |
a positive integer number for the expected binding length of the anti-modification antibody in IP samples; default |
step_length |
a positive integer number for the shift distances of the sliding window; default |
peak_width |
a |
pc_count_cutoff |
a |
bg_count_cutoff |
a |
p_cutoff |
a |
p_adj_cutoff |
a |
log2FC_cutoff |
a |
consistent_peak |
a |
consistent_log2FC_cutoff |
a |
consistent_fdr_cutoff |
a |
alpha |
a |
p0 |
a For a peak to be consistently methylated, the minimum number of significant enriched replicate pairs is defined as the 1 - alpha quantile of a binomial distribution with p = p0 and N = number of possible pairs between replicates. The consistency defined in this way is equivalent to the rejection of an exact binomial test with null hypothesis of p < p0 and N = replicates number of IP * replicates number of input. |
parallel |
a |
bp_param |
optional, a |
exomePeakCalling
perform peak calling from the MeRIP-seq BAM files on exon regions defined by the user provided transcript annotations.
If the BSgenome
object is provided, the peak calling will be conducted with the GC content bias correction.
Under the default setting, for each window, exomePeak2 will fit a GLM of Negative Binomial (NB) with regulated estimation of the overdispersion parameters developed in DESeq
.
Wald tests with H0 of IP/input Log2 Fold Change (LFC) <= 0 are performed on each of the sliding windows.
The significantly modified peaks are selected using the cutoff of p value < 0.0001.
a SummarizedExomePeak
object.
exomePeak2
, glmM
, glmDM
, normalizeGC
, exportResults
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 | ### Define File Directories
GENE_ANNO_GTF = system.file("extdata", "example.gtf", package="exomePeak2")
f1 = system.file("extdata", "IP1.bam", package="exomePeak2")
f2 = system.file("extdata", "IP2.bam", package="exomePeak2")
f3 = system.file("extdata", "IP3.bam", package="exomePeak2")
f4 = system.file("extdata", "IP4.bam", package="exomePeak2")
IP_BAM = c(f1,f2,f3,f4)
f1 = system.file("extdata", "Input1.bam", package="exomePeak2")
f2 = system.file("extdata", "Input2.bam", package="exomePeak2")
f3 = system.file("extdata", "Input3.bam", package="exomePeak2")
INPUT_BAM = c(f1,f2,f3)
f1 = system.file("extdata", "treated_IP1.bam", package="exomePeak2")
TREATED_IP_BAM = c(f1)
f1 = system.file("extdata", "treated_Input1.bam", package="exomePeak2")
TREATED_INPUT_BAM = c(f1)
### Peak Calling
MeRIP_Seq_Alignment <- scanMeripBAM(
bam_ip = IP_BAM,
bam_input = INPUT_BAM,
paired_end = FALSE
)
sep <- exomePeakCalling(
merip_bams = MeRIP_Seq_Alignment,
gff_dir = GENE_ANNO_GTF,
genome = "hg19"
)
sep <- normalizeGC(sep)
sep <- glmM(sep)
exportResults(sep)
### Differential Modification Analysis (Comparison of Two Conditions)
MeRIP_Seq_Alignment <- scanMeripBAM(
bam_ip = IP_BAM,
bam_input = INPUT_BAM,
bam_treated_ip = TREATED_IP_BAM,
bam_treated_input = TREATED_INPUT_BAM,
paired_end = FALSE
)
sep <- exomePeakCalling(
merip_bams = MeRIP_Seq_Alignment,
gff_dir = GENE_ANNO_GTF,
genome = "hg19"
)
sep <- normalizeGC(sep)
sep <- glmDM(sep)
exportResults(sep)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.