Description Usage Arguments Details Value Author(s) References See Also Examples
estimateMode: R implementation of estimateMode.
1 | estimateMode(X,maxiter=50,tol=0.001,alpha=0.1,a1=4.0,G1=FALSE)
|
X |
matrix of which the modes of the rows are estimated. |
maxiter |
maximal number of iterations; default = 50. |
tol |
tolerance for stopping; default = 0.001. |
alpha |
learning rate; default = 0.1. |
a1 |
parameter of the width of the given distribution; default = 4. |
G1 |
kind of distribution, |
The mode is estimated by contrast functions G1
(1/a_1) * \ln (\cosh (a1*x))
or G2
- (1/a_1)*\exp(-1/2 * x*x)
The estimation is performed by gradient descent initialized by the median.
Implementation in R.
u |
the vector of estimated modes. |
xu |
X-u the mode centered data. |
Sepp Hochreiter
A. Hyvaerinen, ‘Fast and Robust Fixed-Point Algorithms for Independent Component Analysis’, IEEE Transactions on Neural Networks 10(3):626-634, 1999.
fabia,
fabias,
fabiap,
fabi,
fabiasp,
mfsc,
nmfdiv,
nmfeu,
nmfsc,
extractPlot,
extractBic,
plotBicluster,
Factorization,
projFuncPos,
projFunc,
estimateMode,
makeFabiaData,
makeFabiaDataBlocks,
makeFabiaDataPos,
makeFabiaDataBlocksPos,
matrixImagePlot,
fabiaDemo,
fabiaVersion
1 2 3 4 5 6 7 8 9 10 11 12 13 | #---------------
# DEMO
#---------------
dat <- makeFabiaDataBlocksPos(n = 100,l= 50,p = 10,f1 = 5,f2 = 5,
of1 = 5,of2 = 10,sd_noise = 2.0,sd_z_noise = 0.2,mean_z = 2.0,
sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0)
X <- dat[[1]]
# modes <- estimateMode(X)
# modes$u - apply(X, 1, median)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.