Description Usage Arguments Details Value Author(s) See Also Examples
extractPlot: R implementation of extractPlot.
1 | extractPlot(fact,thresZ=0.5,ti="",thresL=NULL,Y=NULL,which=c(1,2,3,4,5,6))
|
fact |
object of the class |
thresZ |
threshold for sample belonging to bicluster; default 0.5. |
thresL |
threshold for loading belonging to bicluster (estimated if not given). |
ti |
plot title; default "". |
Y |
noise free data matrix. |
which |
which plot is shown: 1=noise free data (if available), 2=data, 3=reconstructed data, 4=error, 5=absolute factors, 6=absolute loadings; default c(1,2,3,4,5,6). |
Essentially the model is the sum of outer products of vectors:
X = ∑_{i=1}^{p} λ_i z_i^T + U
where the number of summands p is the number of biclusters. The matrix factorization is
X = L Z + U
Here λ_i are from R^n, z_i from R^l, L from R^{n \times p}, Z from R^{p \times l}, and X, U from R^{n \times l}.
The hidden dimension p is used for kmeans clustering of λ_i and z_i .
The λ_i and z_i are used to extract the bicluster i, where a threshold determines which observations and which samples belong the the bicluster.
The method produces following plots depending what plots are chosen by the "which" variable:
“Y”: noise free data (if available), “X”: data, “LZ”: reconstructed data, “LZ-X”: error, “abs(Z)”: absolute factors, “abs(L)”: absolute loadings.
Implementation in R.
Returns corresponding plots
Sepp Hochreiter
fabia,
fabias,
fabiap,
fabi,
fabiasp,
spfabia,
mfsc,
nmfdiv,
nmfeu,
nmfsc,
extractPlot,
extractBic,
plotBicluster,
Factorization,
projFuncPos,
projFunc,
estimateMode,
makeFabiaData,
makeFabiaDataBlocks,
makeFabiaDataPos,
makeFabiaDataBlocksPos,
matrixImagePlot,
fabiaDemo,
fabiaVersion
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 | #---------------
# TEST
#---------------
dat <- makeFabiaDataBlocks(n = 100,l= 50,p = 3,f1 = 5,f2 = 5,
of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0,
sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0)
X <- dat[[1]]
Y <- dat[[2]]
resEx <- fabia(X,3,0.1,20)
extractPlot(resEx,ti="FABIA",Y=Y)
## Not run:
#---------------
# DEMO1
#---------------
dat <- makeFabiaDataBlocks(n = 1000,l= 100,p = 10,f1 = 5,f2 = 5,
of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0,
sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0)
X <- dat[[1]]
Y <- dat[[2]]
resToy <- fabia(X,13,0.01,200)
extractPlot(resToy,ti="FABIA",Y=Y)
#---------------
# DEMO2
#---------------
avail <- require(fabiaData)
if (!avail) {
message("")
message("")
message("#####################################################")
message("Package 'fabiaData' is not available: please install.")
message("#####################################################")
} else {
data(Breast_A)
X <- as.matrix(XBreast)
resBreast <- fabia(X,5,0.1,200)
extractPlot(resBreast,ti="FABIA Breast cancer(Veer)")
#sorting of predefined labels
CBreast
}
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.