Description Usage Arguments Details Value Author(s) References See Also Examples
projFuncPos: R implementation of projFuncPos.
1 | projFuncPos(s, k1, k2)
|
s |
data vector. |
k1 |
sparseness, l1 norm constraint. |
k2 |
l2 norm constraint. |
The projection minimize the Euclidean distance to the original vector given an l_1-norm and an l_2-norm and enforcing non-negativity.
The projection is a convex quadratic problem which is solved iteratively where at each iteration at least one component is set to zero.
In the applications, instead of the l_1-norm a sparseness measurement is used which relates the l_1-norm to the l_2-norm:
Implementation in R.
v |
non-negative sparse projected vector. |
Sepp Hochreiter
Patrik O. Hoyer, ‘Non-negative Matrix Factorization with Sparseness Constraints’, Journal of Machine Learning Research 5:1457-1469, 2004.
fabia,
fabias,
fabiap,
fabi,
fabiasp,
mfsc,
nmfdiv,
nmfeu,
nmfsc,
extractPlot,
extractBic,
plotBicluster,
Factorization,
projFuncPos,
projFunc,
estimateMode,
makeFabiaData,
makeFabiaDataBlocks,
makeFabiaDataPos,
makeFabiaDataBlocksPos,
matrixImagePlot,
fabiaDemo,
fabiaVersion
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | #---------------
# DEMO
#---------------
size <- 30
sparseness <- 0.7
s <- as.vector(rnorm(size))
sp <- sqrt(1.0*size)-(sqrt(1.0*size)-1.0)*sparseness
ss <- projFuncPos(s,k1=sp,k2=1)
s
ss
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.