Factor Analysis for Bicluster Acquisition: Post-Projection (FABIAP)

Description

fabiap: C implementation of fabiap.

Usage

1
fabiap(X,p=13,alpha=0.01,cyc=500,spl=0,spz=0.5,sL=0.6,sZ=0.6,non_negative=0,random=1.0,center=2,norm=1,scale=0.0,lap=1.0,nL=0,lL=0,bL=0)

Arguments

X

the data matrix.

p

number of hidden factors = number of biclusters; default = 13.

alpha

sparseness loadings (0-1.0); default = 0.01.

cyc

number of iterations; default = 500.

spl

sparseness prior loadings (0 - 2.0); default = 0 (Laplace).

spz

sparseness factors (0.5 - 2.0); default = 0.5 (Laplace).

sL

final sparseness loadings; default = 0.6.

sZ

final sparseness factors; default = 0.6.

non_negative

Non-negative factors and loadings if non_negative > 0; default = 0.

random

<=0: by SVD, >0: random initialization of loadings in [-random,random]; default = 1.0.

center

data centering: 1 (mean), 2 (median), > 2 (mode), 0 (no); default = 2.

norm

data normalization: 1 (0.75-0.25 quantile), >1 (var=1), 0 (no); default = 1.

scale

loading vectors are scaled in each iteration to the given variance. 0.0 indicates non scaling; default = 0.0.

lap

minimal value of the variational parameter; default = 1.0.

nL

maximal number of biclusters at which a row element can participate; default = 0 (no limit)

lL

maximal number of row elements per bicluster; default = 0 (no limit)

bL

cycle at which the nL or lL maximum starts; default = 0 (start at the beginning)

Details

Biclusters are found by sparse factor analysis where both the factors and the loadings are sparse. Post-processing by projecting the final results to a given sparseness criterion.

Essentially the model is the sum of outer products of vectors:

X = ∑_{i=1}^{p} λ_i z_i^T + U

where the number of summands p is the number of biclusters. The matrix factorization is

X = L Z + U

Here λ_i are from R^n, z_i from R^l, L from R^{n \times p}, Z from R^{p \times l}, and X, U from R^{n \times l}.

If the nonzero components of the sparse vectors are grouped together then the outer product results in a matrix with a nonzero block and zeros elsewhere.

The model selection is performed by a variational approach according to Girolami 2001 and Palmer et al. 2006.

We included a prior on the parameters and minimize a lower bound on the posterior of the parameters given the data. The update of the loadings includes an additive term which pushes the loadings toward zero (Gaussian prior leads to an multiplicative factor).

Post-processing: The final results of the loadings and the factors are projected to a sparse vector according to Hoyer, 2004: given an l_1-norm and an l_2-norm minimize the Euclidean distance to the original vector (currently the l_2-norm is fixed to 1). The projection is a convex quadratic problem which is solved iteratively where at each iteration at least one component is set to zero. Instead of the l_1-norm a sparseness measurement is used which relates the l_1-norm to the l_2-norm:

The code is implemented in C and the projection in R.

Value

object of the class Factorization. Containing LZ (estimated noise free data L Z), L (loadings L), Z (factors Z), U (noise X-LZ), center (centering vector), scaleData (scaling vector), X (centered and scaled data X), Psi (noise variance σ), lapla (variational parameter), avini (the information which the factor z_{ij} contains about x_j averaged over j) xavini (the information which the factor z_{j} contains about x_j) ini (for each j the information which the factor z_{ij} contains about x_j).

Author(s)

Sepp Hochreiter

References

S. Hochreiter et al., ‘FABIA: Factor Analysis for Bicluster Acquisition’, Bioinformatics 26(12):1520-1527, 2010. http://bioinformatics.oxfordjournals.org/cgi/content/abstract/btq227

Mark Girolami, ‘A Variational Method for Learning Sparse and Overcomplete Representations’, Neural Computation 13(11): 2517-2532, 2001.

J. Palmer, D. Wipf, K. Kreutz-Delgado, B. Rao, ‘Variational EM algorithms for non-Gaussian latent variable models’, Advances in Neural Information Processing Systems 18, pp. 1059-1066, 2006.

Patrik O. Hoyer, ‘Non-negative Matrix Factorization with Sparseness Constraints’, Journal of Machine Learning Research 5:1457-1469, 2004.

See Also

fabia, fabias, fabiap, spfabia, fabi, fabiasp, mfsc, nmfdiv, nmfeu, nmfsc, extractPlot, extractBic, plotBicluster, Factorization, projFuncPos, projFunc, estimateMode, makeFabiaData, makeFabiaDataBlocks, makeFabiaDataPos, makeFabiaDataBlocksPos, matrixImagePlot, fabiaDemo, fabiaVersion

Examples

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
#---------------
# TEST
#---------------

dat <- makeFabiaDataBlocks(n = 100,l= 50,p = 3,f1 = 5,f2 = 5,
  of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0,
  sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0)

X <- dat[[1]]
Y <- dat[[2]]

resEx <- fabiap(X,3,0.1,50)


## Not run: 

#-----------------
# DEMO1: Toy Data
#-----------------

n = 1000
l= 100
p = 10

dat <- makeFabiaDataBlocks(n = n,l= l,p = p,f1 = 5,f2 = 5,
  of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0,
  sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0)

X <- dat[[1]]
Y <- dat[[2]]
ZC <- dat[[3]]
LC <- dat[[4]]

gclab <- rep.int(0,l)
gllab <- rep.int(0,n)
clab <- as.character(1:l)
llab <- as.character(1:n)
for (i in 1:p){
 for (j in ZC[i]){
     clab[j] <- paste(as.character(i),"_",clab[j],sep="")
 }
 for (j in LC[i]){
     llab[j] <- paste(as.character(i),"_",llab[j],sep="")
 }
 gclab[unlist(ZC[i])] <- gclab[unlist(ZC[i])] + p^i
 gllab[unlist(LC[i])] <- gllab[unlist(LC[i])] + p^i
}


groups <- gclab

#### FABIAP

resToy3 <- fabiap(X,13,0.1,400)

extractPlot(resToy3,ti="FABIAP",Y=Y)

raToy3 <- extractBic(resToy3)

if ((raToy3$bic[[1]][1]>1) && (raToy3$bic[[1]][2])>1) {
    plotBicluster(raToy3,1)
}
if ((raToy3$bic[[2]][1]>1) && (raToy3$bic[[2]][2])>1) {
    plotBicluster(raToy3,2)
}
if ((raToy3$bic[[3]][1]>1) && (raToy3$bic[[3]][2])>1) {
    plotBicluster(raToy3,3)
}
if ((raToy3$bic[[4]][1]>1) && (raToy3$bic[[4]][2])>1) {
    plotBicluster(raToy3,4)
}

colnames(X(resToy3)) <- clab

rownames(X(resToy3)) <- llab


plot(resToy3,dim=c(1,2),label.tol=0.1,col.group = groups,lab.size=0.6)
plot(resToy3,dim=c(1,3),label.tol=0.1,col.group = groups,lab.size=0.6)
plot(resToy3,dim=c(2,3),label.tol=0.1,col.group = groups,lab.size=0.6)


#------------------------------------------
# DEMO2: Laura van't Veer's gene expression  
#        data set for breast cancer 
#------------------------------------------


avail <- require(fabiaData)

if (!avail) {
    message("")
    message("")
    message("#####################################################")
    message("Package 'fabiaData' is not available: please install.")
    message("#####################################################")
} else {

data(Breast_A)

X <- as.matrix(XBreast)


resBreast3 <- fabiap(X,5,0.1,400)

extractPlot(resBreast3,ti="FABIAP Breast cancer(Veer)")

raBreast3 <- extractBic(resBreast3)

if ((raBreast3$bic[[1]][1]>1) && (raBreast3$bic[[1]][2])>1) {
    plotBicluster(raBreast3,1)
}
if ((raBreast3$bic[[2]][1]>1) && (raBreast3$bic[[2]][2])>1) {
    plotBicluster(raBreast3,2)
}
if ((raBreast3$bic[[3]][1]>1) && (raBreast3$bic[[3]][2])>1) {
    plotBicluster(raBreast3,3)
}
if ((raBreast3$bic[[4]][1]>1) && (raBreast3$bic[[4]][2])>1) {
    plotBicluster(raBreast3,4)
}

plot(resBreast3,dim=c(1,2),label.tol=0.03,col.group=CBreast,lab.size=0.6)
plot(resBreast3,dim=c(1,3),label.tol=0.03,col.group=CBreast,lab.size=0.6)
plot(resBreast3,dim=c(1,4),label.tol=0.03,col.group=CBreast,lab.size=0.6)
plot(resBreast3,dim=c(1,5),label.tol=0.03,col.group=CBreast,lab.size=0.6)
plot(resBreast3,dim=c(2,3),label.tol=0.03,col.group=CBreast,lab.size=0.6)
plot(resBreast3,dim=c(2,4),label.tol=0.03,col.group=CBreast,lab.size=0.6)
plot(resBreast3,dim=c(2,5),label.tol=0.03,col.group=CBreast,lab.size=0.6)
plot(resBreast3,dim=c(3,4),label.tol=0.03,col.group=CBreast,lab.size=0.6)
plot(resBreast3,dim=c(3,5),label.tol=0.03,col.group=CBreast,lab.size=0.6)
plot(resBreast3,dim=c(4,5),label.tol=0.03,col.group=CBreast,lab.size=0.6)

}


#-----------------------------------
# DEMO3: Su's multiple tissue types
#        gene expression data set 
#-----------------------------------


avail <- require(fabiaData)

if (!avail) {
    message("")
    message("")
    message("#####################################################")
    message("Package 'fabiaData' is not available: please install.")
    message("#####################################################")
} else {

data(Multi_A)

X <- as.matrix(XMulti)

resMulti3 <- fabiap(X,5,0.1,300)

extractPlot(resMulti3,ti="FABIAP Multiple tissues(Su)")


raMulti3 <- extractBic(resMulti3)

if ((raMulti3$bic[[1]][1]>1) && (raMulti3$bic[[1]][2])>1) {
    plotBicluster(raMulti3,1)
}
if ((raMulti3$bic[[2]][1]>1) && (raMulti3$bic[[2]][2])>1) {
    plotBicluster(raMulti3,2)
}
if ((raMulti3$bic[[3]][1]>1) && (raMulti3$bic[[3]][2])>1) {
    plotBicluster(raMulti3,3)
}
if ((raMulti3$bic[[4]][1]>1) && (raMulti3$bic[[4]][2])>1) {
    plotBicluster(raMulti3,4)
}

plot(resMulti3,dim=c(1,2),label.tol=0.01,col.group=CMulti,lab.size=0.6)
plot(resMulti3,dim=c(1,3),label.tol=0.01,col.group=CMulti,lab.size=0.6)
plot(resMulti3,dim=c(1,4),label.tol=0.01,col.group=CMulti,lab.size=0.6)
plot(resMulti3,dim=c(1,5),label.tol=0.01,col.group=CMulti,lab.size=0.6)
plot(resMulti3,dim=c(2,3),label.tol=0.01,col.group=CMulti,lab.size=0.6)
plot(resMulti3,dim=c(2,4),label.tol=0.01,col.group=CMulti,lab.size=0.6)
plot(resMulti3,dim=c(2,5),label.tol=0.01,col.group=CMulti,lab.size=0.6)
plot(resMulti3,dim=c(3,4),label.tol=0.01,col.group=CMulti,lab.size=0.6)
plot(resMulti3,dim=c(3,5),label.tol=0.01,col.group=CMulti,lab.size=0.6)
plot(resMulti3,dim=c(4,5),label.tol=0.01,col.group=CMulti,lab.size=0.6)

}


#-----------------------------------------
# DEMO4: Rosenwald's diffuse large-B-cell
#        lymphoma gene expression data set 
#-----------------------------------------

avail <- require(fabiaData)

if (!avail) {
    message("")
    message("")
    message("#####################################################")
    message("Package 'fabiaData' is not available: please install.")
    message("#####################################################")
} else {


data(DLBCL_B)

X <- as.matrix(XDLBCL)


resDLBCL3 <- fabiap(X,5,0.1,400)

extractPlot(resDLBCL3,ti="FABIAP Lymphoma(Rosenwald)")
raDLBCL3 <- extractBic(resDLBCL3)

if ((raDLBCL3$bic[[1]][1]>1) && (raDLBCL3$bic[[1]][2])>1) {
    plotBicluster(raDLBCL3,1)
}
if ((raDLBCL3$bic[[2]][1]>1) && (raDLBCL3$bic[[2]][2])>1) {
    plotBicluster(raDLBCL3,2)
}
if ((raDLBCL3$bic[[3]][1]>1) && (raDLBCL3$bic[[3]][2])>1) {
    plotBicluster(raDLBCL3,3)
}
if ((raDLBCL3$bic[[4]][1]>1) && (raDLBCL3$bic[[4]][2])>1) {
    plotBicluster(raDLBCL3,4)
}

plot(resDLBCL3,dim=c(1,2),label.tol=0.03,col.group=CDLBCL,lab.size=0.6)
plot(resDLBCL3,dim=c(1,3),label.tol=0.03,col.group=CDLBCL,lab.size=0.6)
plot(resDLBCL3,dim=c(1,4),label.tol=0.03,col.group=CDLBCL,lab.size=0.6)
plot(resDLBCL3,dim=c(1,5),label.tol=0.03,col.group=CDLBCL,lab.size=0.6)
plot(resDLBCL3,dim=c(2,3),label.tol=0.03,col.group=CDLBCL,lab.size=0.6)
plot(resDLBCL3,dim=c(2,4),label.tol=0.03,col.group=CDLBCL,lab.size=0.6)
plot(resDLBCL3,dim=c(2,5),label.tol=0.03,col.group=CDLBCL,lab.size=0.6)
plot(resDLBCL3,dim=c(3,4),label.tol=0.03,col.group=CDLBCL,lab.size=0.6)
plot(resDLBCL3,dim=c(3,5),label.tol=0.03,col.group=CDLBCL,lab.size=0.6)
plot(resDLBCL3,dim=c(4,5),label.tol=0.03,col.group=CDLBCL,lab.size=0.6)


}


## End(Not run)

Want to suggest features or report bugs for rdrr.io? Use the GitHub issue tracker.