Nothing
##========================================
## FUNCTIONS FOR THE NETWORK FLOW SOLVER
##=========================================
spams_flipflop.multLeftDiag <- function(X,Y) {
# XAt = matrix(rep(0,m * n),nrow = m,ncol = n)
m=nrow(X)
n=ncol(X)
XY= matrix(c(0),nrow = m,ncol = n)
multLeftDiag(X,Y,XY)
return(XY)
}
spams_flipflop.fistaFlat <- function(Y,X,W0,return_optim_info = FALSE,numThreads =-1,max_it =1000,L0=1.0,
fixed_step=FALSE,gamma=1.5,lambda1=1.0,delta=1.0,lambda2=0.,lambda3=0.,
a=1.0,b=0.,c=1.0,tol=0.000001,it0=100,max_iter_backtracking=1000,
compute_gram=FALSE,lin_admm=FALSE,admm=FALSE,intercept=FALSE,
resetflow=FALSE,regul="",loss="",verbose=FALSE,pos=FALSE,clever=FALSE,
log=FALSE,ista=FALSE,subgrad=FALSE,logName="",is_inner_weights=FALSE,
inner_weights=c(0.),size_group=1,sqrt_step=TRUE,transpose=FALSE,linesearch_mode=0) {
m = nrow(W0)
n = ncol(W0)
# W = matrix(rep(0,m * n),nrow = m,ncol = n)
W = matrix(c(0),nrow = m,ncol = n)
# optim_info = do.call(solver,c(list(Y,X,W0,W),params))
## optim_info = .mycall('fistaFlat',c('Y','X','W0','W',params))
optim_info = fistaFlat(Y,X,W0,W,numThreads ,max_it ,L0,fixed_step,gamma,lambda1,delta,lambda2,lambda3,a,b,c,tol,it0,max_iter_backtracking,compute_gram,lin_admm,admm,intercept,resetflow,regul,loss,verbose,pos,clever,log,ista,subgrad,logName,is_inner_weights,inner_weights,size_group,sqrt_step,transpose,linesearch_mode)
if(return_optim_info == TRUE)
return(list(W,optim_info))
else
return (W)
}
spams_flipflop.solverPoisson <- function(y,X,beta0,weights,delta, max_iter=500, tol=1e-4) {
if(class(X) != 'dgCMatrix'){
stop("X should be a sparse matrix")
}
beta=matrix(c(0),nrow= ncol(X),1)
solverPoisson(y,X,beta0,beta,weights,delta=delta,max_iter,tol)
return(beta)
}
spams_flipflop.solverPoissonFull <- function(y,X,beta0,weights,delta, max_iter=500, tol=1e-4) {
beta=matrix(c(0),nrow= ncol(X),1)
solverPoissonFull(y,X,beta0,beta,weights,delta=delta,max_iter,tol)
return(beta)
}
spams_flipflop.sepCostsPathCoding <- function(alpha0, DAG, loss_weights, max_capacity=1e10, epsilon_flow=1e-10, prices=NULL,
numThreads =-1, lambda=1.0,
regul="", loss="", pos=FALSE, tol=1e-5, delta=1e-3, mode_decomposition=1){
if(class(prices) == 'dgCMatrix'){
stop("sepCostsPathCoding : prices should not be a sparse matrix")
}
if (length(DAG) != 3) {
stop("sepCostsPathCoding : DAG should be a list of 3 elements")
}
if(class(DAG[['weights']]) != 'dgCMatrix'){
stop("sepCostsPathCoding : DAG[['weights']] should be a sparse matrix of class dgCMatrix")
}
start_weights = DAG[['start_weights']]
stop_weights = DAG[['stop_weights']]
ir = DAG[['weights']]@i
jc = DAG[['weights']]@p
weights = DAG[['weights']]@x
if(is.null(prices)){
n <- length(start_weights)
prices <- matrix(c(0), nrow=2*n+2, ncol=1)
}
alpha = matrix(c(0),nrow = nrow(alpha0),ncol = ncol(alpha0))
path = sepCostsPathCoding(alpha0,alpha,weights, ir, jc, start_weights, stop_weights, max_capacity, epsilon_flow, prices,
numThreads,lambda,tol,delta,loss_weights,regul,loss,pos,mode_decomposition)
indptr = path[[1]]
indices = path[[2]]
data = path[[3]]
shape = path[[4]]
path.sp.mat = sparseMatrix(i = indices, p = indptr, x = data, dims = shape, index1 = FALSE)
return(list('alpha'=alpha, 'path'=path.sp.mat))
}
spams_flipflop.evalPathCoding <- function(alpha, DAG, numThreads =-1, lambda1=1.0, lambda2=0.,
intercept=FALSE, resetflow=FALSE, regul="",verbose=FALSE, precision=1e9,
pos=FALSE, clever=TRUE, eval=FALSE, eval_dual=FALSE, size_group=1, transpose=FALSE) {
if (length(DAG) != 3) {
stop("evalPathCoding : DAG should be a list of 3 elements")
}
if(class(DAG[['weights']]) != 'dgCMatrix'){
stop("evalPathCoding : DAG[['weights']] should be a sparse matrix of class dgCMatrix")
}
start_weights = DAG[['start_weights']]
stop_weights = DAG[['stop_weights']]
ir = DAG[['weights']]@i
jc = DAG[['weights']]@p
weights = DAG[['weights']]@x
val <- c(0)
##val <- matrix(c(0),nrow = 1,ncol = 1)
path = evalPathCoding(alpha, val,
precision, weights, ir, jc, start_weights, stop_weights,
numThreads,lambda1,lambda2,intercept,resetflow,regul,verbose,pos,clever,eval,eval_dual,size_group,transpose)
indptr = path[[1]]
indices = path[[2]]
data = path[[3]]
shape = path[[4]]
path.sp.mat = sparseMatrix(i = indices, p = indptr, x = data, dims = shape, index1 = FALSE)
##return(list('alpha'=alpha, 'path'=path.sp.mat, 'dual'=val))
if(eval_dual){
return(list('dual'=val, 'alpha'=alpha, 'path'=path.sp.mat))}
else{
return(list('alpha'=alpha, 'path'=path.sp.mat))}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.