Description Usage Arguments References See Also Examples
The tmixFilter
function creates a filter object which is then passed
to the filter
method that performs filtering on a flowFrame
object. This method pair is provided to let flowClust integrate with
the flowCore package.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 | tmixFilter(filterId = "tmixFilter", parameters = "", ...)
## S4 method for signature 'ANY,flowClust'
x %in% table
## S4 method for signature 'flowFrame,tmixFilterResult'
x %in% table
## S4 method for signature 'flowFrame,tmixFilter'
x %in% table
## S4 method for signature 'ANY,tmixFilterResult'
x %in% table
## S4 method for signature 'ANY,flowClustList'
x %in% table
## S4 method for signature 'ANY,tmixFilterResultList'
x %in% table
## S4 method for signature 'flowFrame,flowClust'
x[i, j, ..., drop = FALSE]
## S4 method for signature 'flowFrame,tmixFilterResult'
x[i, j, ..., drop = FALSE]
## S4 method for signature 'flowFrame,flowClustList'
x[i, j, ..., drop = FALSE]
## S4 method for signature 'flowFrame,tmixFilterResultList'
x[i, j, ..., drop = FALSE]
## S4 method for signature 'tmixFilterResultList,ANY'
x[[i, j, ..., exact = TRUE]]
## S4 method for signature 'tmixFilterResultList'
length(x)
## S4 method for signature 'tmixFilterResult,tmixFilter'
summarizeFilter(result, filter)
|
filterId |
A character string that identifies the filter created. |
parameters |
A character vector specifying the variables to be used in
filtering. When it is left unspecified, all the variables of the
|
... |
Other arguments passed to the The The The If If |
x |
flowFrame |
table |
tmixFilterResult |
i |
tmixFilterResult or tmixFilterResultList |
j, drop, exact |
not used |
result |
tmixFilterResult |
filter |
tmixFilter |
Lo, K., Brinkman, R. R. and Gottardo, R. (2008) Automated Gating of Flow Cytometry Data via Robust Model-based Clustering. Cytometry A 73, 321-332.
flowClust
,
summary
,
plot
,
density
,
hist
, Subset
,
split
, ruleOutliers
, Map
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 | ### The example below largely resembles the one in the flowClust
### man page. The main purpose here is to demonstrate how the
### entire cluster analysis can be done in a fashion highly
### integrated into flowCore.
data(rituximab)
library(flowCore)
### create a filter object
s1filter <- tmixFilter("s1", c("FSC.H", "SSC.H"), K=1)
### cluster the data using FSC.H and SSC.H
res1 <- filter(rituximab, s1filter)
### remove outliers before proceeding to the second stage
# %in% operator returns a logical vector indicating whether each
# of the observations lies inside the gate or not
rituximab2 <- rituximab[rituximab %in% res1,]
# a shorthand for the above line
rituximab2 <- rituximab[res1,]
# this can also be done using the Subset method
rituximab2 <- Subset(rituximab, res1)
### cluster the data using FL1.H and FL3.H (with 3 clusters)
s2filter <- tmixFilter("s2", c("FL1.H", "FL3.H"), K=3)
res2 <- filter(rituximab2, s2filter)
show(s2filter)
show(res2)
summary(res2)
# to demonstrate the use of the split method
split(rituximab2, res2)
split(rituximab2, res2, population=list(sc1=c(1,2), sc2=3))
# to show the cluster assignment of observations
table(Map(res2))
# to show the cluster centres (i.e., the mean parameter estimates
# transformed back to the original scale) and proportions
getEstimates(res2)
### demonstrate the use of various plotting methods
# a scatterplot
plot(rituximab2, res2, level=0.8)
plot(rituximab2, res2, level=0.8, include=c(1,2), grayscale=TRUE,
pch.outliers=2)
# a contour / image plot
res2.den <- density(res2, data=rituximab2)
plot(res2.den)
plot(res2.den, scale="sqrt", drawlabels=FALSE)
plot(res2.den, type="image", nlevels=100)
plot(density(res2, include=c(1,2), from=c(0,0), to=c(400,600)))
# a histogram (1-D density) plot
plot(rituximab2, res2, "FL1.H")
### to demonstrate the use of the ruleOutliers method
summary(res2)
# change the rule to call outliers
ruleOutliers(res2) <- list(level=0.95)
# augmented cluster boundaries lead to fewer outliers
summary(res2)
# the following line illustrates how to select a subset of data
# to perform cluster analysis through the min and max arguments;
# also note the use of level to specify a rule to call outliers
# other than the default
s2t <- tmixFilter("s2t", c("FL1.H", "FL3.H"), K=3, B=100,
min=c(0,0), max=c(400,800), level=0.95, z.cutoff=0.5)
filter(rituximab2, s2t)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.