Description Usage Arguments Details Value Author(s) References See Also Examples
These tools allow to analyze results of the package fabia. They
can be used to identify IBD segment regions and for adjusting
the parameters of extractIBDsegments
and hapFabia
such as
ps
(top L values for extraction), psZ
(top Z values for
extraction), inteA
(length of
histogram bins).
plotL
plots the loadings of a fabia result that are above a threshold
either as points, histogram or by a smooth scatter plot.
topLZ
returns largest L or Z values of a fabia result, where
thresholds are given either by a quantile or by a value.
histL
supplies a histogram of the loadings
obtained by fabia.
1 2 3 4 5 6 |
res |
fabia result; instance of the class |
n |
the number of the bicluster to consider. |
p |
the quantile threshold above which values are returned (p or w must be given). |
w |
the value threshold above which values are returned (p or w must be given). |
type |
the type of the plot: |
intervv |
length of the interval bins for histograms. |
off |
offset of the interval bins from zero for histograms. |
t |
points type for the plot. |
cex |
size of the points for the plot. |
LZ |
"L" for loadings L or "Z" for factors Z. |
indices |
if |
plotL
plots the loadings of a fabia result that are above a threshold
either as points, histogram or by a smooth scatter plot.
Thresholds can be given by a quantile or by a value.
topLZ
returns largest L or Z indices/values of a fabia result.
Thresholds are given by quantile or by a value.
histL
computes histogram of the loadings obtained by fabia.
Implementation in R.
|
|
|
|
|
|
Sepp Hochreiter
S. Hochreiter et al., ‘FABIA: Factor Analysis for Bicluster Acquisition’, Bioinformatics 26(12):1520-1527, 2010.
IBDsegment-class
,
IBDsegmentList-class
,
analyzeIBDsegments
,
compareIBDsegmentLists
,
extractIBDsegments
,
findDenseRegions
,
hapFabia
,
hapFabiaVersion
,
hapRes
,
chr1ASW1000G
,
IBDsegmentList2excel
,
identifyDuplicates
,
iterateIntervals
,
makePipelineFile
,
matrixPlot
,
mergeIBDsegmentLists
,
mergedIBDsegmentList
,
plotIBDsegment
,
res
,
setAnnotation
,
setStatistics
,
sim
,
simu
,
simulateIBDsegmentsFabia
,
simulateIBDsegments
,
split_sparse_matrix
,
toolsFactorizationClass
,
vcftoFABIA
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | data(res)
plotL(res,n=1,p=0.95,w=NULL,type="histogram",
intervv=50,off=0,t="p",cex=1)
plotL(res,n=1,p=0.95,w=NULL,type="points",
intervv=50,off=0,t="p",cex=1)
plotL(res,n=1,p=NULL,w=0.5,type="points",
intervv=50,off=0,t="p",cex=1)
plotL(res,n=1,p=0.95,w=NULL,type="smooth",
intervv=50,off=0,t="p",cex=1)
plotL(res,n=1,p=NULL,w=0.5,type="smooth",
intervv=50,off=0,t="p",cex=1)
topLZ(res,n=1,LZ="L",indices=TRUE,p=0.95,w=NULL)
topLZ(res,n=1,LZ="L",indices=TRUE,p=NULL,w=0.95)
topLZ(res,n=1,LZ="Z",indices=TRUE,p=0.95,w=NULL)
topLZ(res,n=1,LZ="Z",indices=TRUE,p=NULL,w=0.4)
topLZ(res,n=1,LZ="L",indices=FALSE,p=0.95,w=NULL)
topLZ(res,n=1,LZ="L",indices=FALSE,p=NULL,w=0.95)
topLZ(res,n=1,LZ="Z",indices=FALSE,p=0.95,w=NULL)
topLZ(res,n=1,LZ="Z",indices=FALSE,p=NULL,w=0.4)
h1 <- histL(res,n=1,p=0.9,w=NULL,intervv=50,off=0)
print(h1$counts)
h1 <- histL(res,n=1,p=NULL,w=0.5,intervv=50,off=0)
print(h1$counts)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.