Description Usage Arguments Details Value Author(s) References See Also Examples
identifyDuplicates
: R implementation of identifyDuplicates
.
IBD segments that are similar to each other are
identified.
This function is in combination
with split_sparse_matrix
whith splits
a chromosome in overlapping intervals.
These intervals are analyzed by
iterateIntervals
for IBD segments.
Now, these IBD segments are checked for duplicates
by identifyDuplicates
.
Results are written to the file "dups.Rda".
1 2 | identifyDuplicates(fileName,startRun=1,endRun,
shift=5000,intervalSize=10000)
|
fileName |
file name prefix without type of the result of |
startRun |
first interval. |
endRun |
last interval. |
shift |
distance between start of adjacent intervals. |
intervalSize |
number of SNVs in a interval. |
IBD segments that are similar to each other are identified
and the result is written to the file "dups.Rda".
For analysis across a whole chromosome this
information is important in order to avoid
multiple counting of features from the same IBD segment.
Used subsequently to iterateIntervals
which analyzes
intervals of a chromosome for IBD segments.
The information on duplicates (or similar IBD segments)
is important for a subsequent run of analyzeIBDsegments
to avoid redundancies.
Results are saved in "dups.Rda" which contains
dups
(the index of duplicates),
un
(the index of non-duplicates),
countsA1
(the counts and mapping to intervals for non-duplicates), and
countsA2
(the counts and mapping to intervals for all IBD segments).
Implementation in R.
IBD segments that are similar to each other are identified
Sepp Hochreiter
S. Hochreiter et al., ‘FABIA: Factor Analysis for Bicluster Acquisition’, Bioinformatics 26(12):1520-1527, 2010.
IBDsegment-class
,
IBDsegmentList-class
,
analyzeIBDsegments
,
compareIBDsegmentLists
,
extractIBDsegments
,
findDenseRegions
,
hapFabia
,
hapFabiaVersion
,
hapRes
,
chr1ASW1000G
,
IBDsegmentList2excel
,
identifyDuplicates
,
iterateIntervals
,
makePipelineFile
,
matrixPlot
,
mergeIBDsegmentLists
,
mergedIBDsegmentList
,
plotIBDsegment
,
res
,
setAnnotation
,
setStatistics
,
sim
,
simu
,
simulateIBDsegmentsFabia
,
simulateIBDsegments
,
split_sparse_matrix
,
toolsFactorizationClass
,
vcftoFABIA
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 | print("Identify duplicates of IBD segments")
## Not run:
#########################################
## Already run in "iterateIntervals.Rd" ##
#########################################
#Work in a temporary directory.
old_dir <- getwd()
setwd(tempdir())
# Load data and write to vcf file.
data(chr1ASW1000G)
write(chr1ASW1000G,file="chr1ASW1000G.vcf")
#Create the analysis pipeline for extracting IBD segments
makePipelineFile(fileName="chr1ASW1000G",shiftSize=500,intervalSize=1000,haplotypes=TRUE)
source("pipeline.R")
# Following files are produced:
list.files(pattern="chr1")
# Next we load interval 5 and there the first and second IBD segment
posAll <- 5
start <- (posAll-1)*shiftSize
end <- start + intervalSize
pRange <- paste("_",format(start,scientific=FALSE),"_",format(end,scientific=FALSE),sep="")
load(file=paste(fileName,pRange,"_resAnno",".Rda",sep=""))
IBDsegmentList <- resHapFabia$mergedIBDsegmentList
summary(IBDsegmentList)
IBDsegment1 <- IBDsegmentList[[1]]
summary(IBDsegment1)
IBDsegment2 <- IBDsegmentList[[2]]
summary(IBDsegment2)
#Plot the first IBD segment in interval 5
plot(IBDsegment1,filename=paste(fileName,pRange,"_mat",sep=""))
#Plot the second IBD segment in interval 5
plot(IBDsegment2,filename=paste(fileName,pRange,"_mat",sep=""))
setwd(old_dir)
## End(Not run)
## Not run:
###here an example of the the automatically generated pipeline
### with: shiftSize=5000,intervalSize=10000,fileName="filename"
#####define intervals, overlap, filename #######
shiftSize <- 5000
intervalSize <- 10000
fileName="filename" # without type
haplotypes <- TRUE
dosage <- FALSE
#####load library#######
library(hapFabia)
#####convert from .vcf to _mat.txt#######
vcftoFABIA(fileName=fileName)
#####copy haplotype, genotype, or dosage matrix to matrix#######
if (haplotypes) {
file.copy(paste(fileName,"_matH.txt",sep=""), paste(fileName,"_mat.txt",sep=""))
} else {
if (dosage) {
file.copy(paste(fileName,"_matD.txt",sep=""), paste(fileName,"_mat.txt",sep=""))
} else {
file.copy(paste(fileName,"_matG.txt",sep=""), paste(fileName,"_mat.txt",sep=""))
}
}
#####split/ generate intervals#######
split_sparse_matrix(fileName=fileName,intervalSize=intervalSize,
shiftSize=shiftSize,annotation=TRUE)
#####compute how many intervals we have#######
ina <- as.numeric(readLines(paste(fileName,"_mat.txt",sep=""),n=2))
noSNVs <- ina[2]
over <- intervalSize%/%shiftSize
N1 <- noSNVs%/%shiftSize
endRunA <- (N1-over+2)
#####analyze each interval#######
#####may be done by parallel runs#######
iterateIntervals(startRun=1,endRun=endRunA,shift=shiftSize,
intervalSize=intervalSize,fileName=fileName,individuals=0,
upperBP=0.05,p=10,iter=40,alpha=0.03,cyc=50,IBDsegmentLength=50,
Lt = 0.1,Zt = 0.2,thresCount=1e-5,mintagSNVsFactor=3/4,
pMAF=0.03,haplotypes=haplotypes,cut=0.8,procMinIndivids=0.1,thresPrune=1e-3,
simv="minD",minTagSNVs=6,minIndivid=2,avSNVsDist=100,SNVclusterLength=100)
#####identify duplicates#######
identifyDuplicates(fileName=fileName,startRun=1,endRun=endRunA,
shift=shiftSize,intervalSize=intervalSize)
#####analyze results; parallel#######
anaRes <- analyzeIBDsegments(fileName=fileName,startRun=1,endRun=endRunA,
shift=shiftSize,intervalSize=intervalSize)
print("Number IBD segments:")
print(anaRes$noIBDsegments)
print("Statistics on IBD segment length in SNVs (all SNVs in the IBD segment):")
print(anaRes$avIBDsegmentLengthSNVS)
print("Statistics on IBD segment length in bp:")
print(anaRes$avIBDsegmentLengthS)
print("Statistics on number of individuals belonging to IBD segments:")
print(anaRes$avnoIndividS)
print("Statistics on number of tagSNVs of IBD segments:")
print(anaRes$avnoTagSNVsS)
print("Statistics on MAF of tagSNVs of IBD segments:")
print(anaRes$avnoFreqS)
print("Statistics on MAF within the group of tagSNVs of IBD segments:")
print(anaRes$avnoGroupFreqS)
print("Statistics on number of changes between major and minor allele frequency:")
print(anaRes$avnotagSNVChangeS)
print("Statistics on number of tagSNVs per individual of an IBD segment:")
print(anaRes$avnotagSNVsPerIndividualS)
print("Statistics on number of individuals that have the minor allele of tagSNVs:")
print(anaRes$avnoindividualPerTagSNVS)
#####load result for interval 50#######
posAll <- 50 # (50-1)*5000 = 245000: interval 245000 to 255000
start <- (posAll-1)*shiftSize
end <- start + intervalSize
pRange <- paste("_",format(start,scientific=FALSE),"_",
format(end,scientific=FALSE),sep="")
load(file=paste(fileName,pRange,"_resAnno",".Rda",sep=""))
IBDsegmentList <- resHapFabia$mergedIBDsegmentList # $
summary(IBDsegmentList)
#####plot IBD segments in interval 50#######
plot(IBDsegmentList,filename=paste(fileName,pRange,"_mat",sep=""))
##attention: filename without type ".txt"
#####plot the first IBD segment in interval 50#######
IBDsegment <- IBDsegmentList[[1]]
plot(IBDsegment,filename=paste(fileName,pRange,"_mat",sep=""))
##attention: filename without type ".txt"
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.