Description Usage Arguments Details Value Author(s) References See Also Examples
iterateIntervals
: R implementation of iterateIntervals
.
Loops over all intervals and calls hapFabia
and then stores the
results. Intervals have been
generated by split_sparse_matrix
.
1 2 3 4 5 6 7 8 9 10 | iterateIntervals(startRun=1,endRun,shift=5000,intervalSize=10000,
annotationFile=NULL,fileName,prefixPath="",
sparseMatrixPostfix="_mat",annotPostfix="_annot.txt",
individualsPostfix="_individuals.txt",individuals=0,
lowerBP=0,upperBP=0.05,p=10,iter=40,quant=0.01,eps=1e-5,
alpha=0.03,cyc=50,non_negative=1,write_file=0,norm=0,
lap=100.0,IBDsegmentLength=50,Lt = 0.1,Zt = 0.2,
thresCount=1e-5,mintagSNVsFactor=3/4,pMAF=0.03,
haplotypes=FALSE,cut=0.8,procMinIndivids=0.1,thresPrune=1e-3,
simv="minD",minTagSNVs=6,minIndivid=2,avSNVsDist=100,SNVclusterLength=100)
|
startRun |
first interval. |
endRun |
last interval. |
shift |
distance between starts of adjacent intervals. |
intervalSize |
number of SNVs in a interval. |
annotationFile |
file name of the annotation file for the individuals. |
fileName |
passed to hapFabia: file name of the genotype matrix in sparse format. |
prefixPath |
passed to hapFabia: path to the genotype file. |
sparseMatrixPostfix |
passed to hapFabia: postfix string for the sparse matrix. |
annotPostfix |
passed to hapFabia: postfix string for the SNV annotation file. |
individualsPostfix |
passed to hapFabia: postfix string for the file containing the names of the individuals. |
individuals |
passed to hapFabia: vector of individuals which are included into the analysis; default = 0 (all individuals). |
lowerBP |
passed to hapFabia: lower bound on minor allele frequencies (MAF); however at least two occurrences are required to remove private SNVs. |
upperBP |
passed to hapFabia: upper bound on minor allele frequencies (MAF) to extract rare variants. |
p |
passed to hapFabia: number of biclusters per iteration. |
iter |
passed to hapFabia: number of iterations. |
quant |
passed to hapFabia: percentage of loadings L to remove in each iteration. |
eps |
passed to hapFabia: lower bound for variational parameter lapla; default 1e-5. |
alpha |
passed to hapFabia: sparseness of the loadings; default = 0.03. |
cyc |
passed to hapFabia: number of cycles per iterations; default 50. |
non_negative |
passed to hapFabia: non-negative factors and loadings if non_negative = 1; default = 1 (yes). |
write_file |
passed to hapFabia: results are written to files (L in sparse format), default = 0 (not written). |
norm |
passed to hapFabia: data normalization; default 0 (no normalization). |
lap |
passed to hapFabia: minimal value of the variational parameter; default 100.0. |
IBDsegmentLength |
passed to hapFabia: typical IBD segment length in kbp. |
Lt |
passed to hapFabia: percentage of largest Ls to consider for IBD segment extraction. |
Zt |
passed to hapFabia: percentage of largest Zs to consider for IBD segment extraction. |
thresCount |
passed to hapFabia: p-value of random histogram hit; default 1e-5. |
mintagSNVsFactor |
passed to hapFabia: percentage of IBD segment overlap; default 3/4. |
pMAF |
passed to hapFabia: averaged and corrected (for non-uniform distributions) minor allele frequency. |
haplotypes |
passed to hapFabia: haplotypes = TRUE then phased genotypes meaning two chromosomes per individual otherwise unphased genotypes. |
cut |
passed to hapFabia: cutoff for merging IBD segments after a hierarchical clustering; default 0.8. |
procMinIndivids |
passed to hapFabia: percentage of cluster individuals a tagSNV must tag to be considered as tagSNV for the IBD segment. |
thresPrune |
passed to hapFabia: threshold for pruning border tagSNVs based on an exponential distribution where border tagSNVs with large distances to the next tagSNV are pruned. |
simv |
passed to hapFabia: similarity measure for merging clusters: |
minTagSNVs |
passed to hapFabia: minimum matching tagSNVs for cluster similarity; otherwise the similarity is set to zero. |
minIndivid |
passed to hapFabia: minimum matching individuals for cluster similarity; otherwise the similarity is set to zero. |
avSNVsDist |
passed to hapFabia: average distance between SNVs in
base pairs - used
together with |
SNVclusterLength |
passed to hapFabia: if |
Implementation in R.
Reads annotation of the individuals if available,
then calls hapFabia
and stores its results.
Results are saved in EXCEL format and as R
binaries.
iterateIntervals
loops over all intervals
and calls hapFabia
and then stores the
results. Intervals have been
generated by split_sparse_matrix
.
The results are the indentified IBD segments which are
stored separately per interval.
A subsequent analysis first calls
identifyDuplicates
to identify IBD segments that
are found more than one time and then analyzes the IBD segments by
analyzeIBDsegments
.
The SNV annotation file ..._annot.txt
contains:
first line: number individuals;
second line: number SNVs;
for each SNV a line containing following field that are blank separated: "chromosome", "physical position", "snvNames", "snvMajor", "snvMinor", "quality", "pass", "info of vcf file", "fields in vcf file", "frequency", "0/1: 1 is changed if major allele is actually minor allele".
The individuals annotation file,
which name is give to annotationFile
,
contains per individual a tab separated line with
id;
subPopulation;
population;
platform.
Loop over DNA intervals with a call of hapFabia
Sepp Hochreiter
S. Hochreiter et al., ‘FABIA: Factor Analysis for Bicluster Acquisition’, Bioinformatics 26(12):1520-1527, 2010.
IBDsegment-class
,
IBDsegmentList-class
,
analyzeIBDsegments
,
compareIBDsegmentLists
,
extractIBDsegments
,
findDenseRegions
,
hapFabia
,
hapFabiaVersion
,
hapRes
,
chr1ASW1000G
,
IBDsegmentList2excel
,
identifyDuplicates
,
iterateIntervals
,
makePipelineFile
,
matrixPlot
,
mergeIBDsegmentLists
,
mergedIBDsegmentList
,
plotIBDsegment
,
res
,
setAnnotation
,
setStatistics
,
sim
,
simu
,
simulateIBDsegmentsFabia
,
simulateIBDsegments
,
split_sparse_matrix
,
toolsFactorizationClass
,
vcftoFABIA
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 | ## Not run:
###here an example of the the automatically generated pipeline
### with: shiftSize=5000,intervalSize=10000,fileName="filename"
#####define intervals, overlap, filename #######
shiftSize <- 5000
intervalSize <- 10000
fileName="filename" # without type
haplotypes <- TRUE
dosage <- FALSE
#####load library#######
library(hapFabia)
#####convert from .vcf to _mat.txt#######
vcftoFABIA(fileName=fileName)
#####copy haplotype, genotype, or dosage matrix to matrix#######
if (haplotypes) {
file.copy(paste(fileName,"_matH.txt",sep=""), paste(fileName,"_mat.txt",sep=""))
} else {
if (dosage) {
file.copy(paste(fileName,"_matD.txt",sep=""), paste(fileName,"_mat.txt",sep=""))
} else {
file.copy(paste(fileName,"_matG.txt",sep=""), paste(fileName,"_mat.txt",sep=""))
}
}
#####split/ generate intervals#######
split_sparse_matrix(fileName=fileName,intervalSize=intervalSize,
shiftSize=shiftSize,annotation=TRUE)
#####compute how many intervals we have#######
ina <- as.numeric(readLines(paste(fileName,"_mat.txt",sep=""),n=2))
noSNVs <- ina[2]
over <- intervalSize%/%shiftSize
N1 <- noSNVs%/%shiftSize
endRunA <- (N1-over+2)
#####analyze each interval#######
#####may be done by parallel runs#######
iterateIntervals(startRun=1,endRun=endRunA,shift=shiftSize,
intervalSize=intervalSize,fileName=fileName,individuals=0,
upperBP=0.05,p=10,iter=40,alpha=0.03,cyc=50,IBDsegmentLength=50,
Lt = 0.1,Zt = 0.2,thresCount=1e-5,mintagSNVsFactor=3/4,
pMAF=0.035,haplotypes=haplotypes,cut=0.8,procMinIndivids=0.1,thresPrune=1e-3,
simv="minD",minTagSNVs=6,minIndivid=2,avSNVsDist=100,SNVclusterLength=100)
#####identify duplicates#######
identifyDuplicates(fileName=fileName,startRun=1,endRun=endRunA,
shift=shiftSize,intervalSize=intervalSize)
#####analyze results; parallel#######
anaRes <- analyzeIBDsegments(fileName=fileName,startRun=1,endRun=endRunA,
shift=shiftSize,intervalSize=intervalSize)
print("Number IBD segments:")
print(anaRes$noIBDsegments)
print("Statistics on IBD segment length in SNVs (all SNVs in the IBD segment):")
print(anaRes$avIBDsegmentLengthSNVS)
print("Statistics on IBD segment length in bp:")
print(anaRes$avIBDsegmentLengthS)
print("Statistics on number of individuals belonging to IBD segments:")
print(anaRes$avnoIndividS)
print("Statistics on number of tagSNVs of IBD segments:")
print(anaRes$avnoTagSNVsS)
print("Statistics on MAF of tagSNVs of IBD segments:")
print(anaRes$avnoFreqS)
print("Statistics on MAF within the group of tagSNVs of IBD segments:")
print(anaRes$avnoGroupFreqS)
print("Statistics on number of changes between major and minor allele frequency:")
print(anaRes$avnotagSNVChangeS)
print("Statistics on number of tagSNVs per individual of an IBD segment:")
print(anaRes$avnotagSNVsPerIndividualS)
print("Statistics on number of individuals that have the minor allele of tagSNVs:")
print(anaRes$avnoindividualPerTagSNVS)
#####load result for interval 50#######
posAll <- 50 # (50-1)*5000 = 245000: interval 245000 to 255000
start <- (posAll-1)*shiftSize
end <- start + intervalSize
pRange <- paste("_",format(start,scientific=FALSE),"_",
format(end,scientific=FALSE),sep="")
load(file=paste(fileName,pRange,"_resAnno",".Rda",sep=""))
IBDsegmentList <- resHapFabia$mergedIBDsegmentList # $
summary(IBDsegmentList)
#####plot IBD segments in interval 50#######
plot(IBDsegmentList,filename=paste(fileName,pRange,"_mat",sep=""))
##attention: filename without type ".txt"
#####plot the first IBD segment in interval 50#######
IBDsegment <- IBDsegmentList[[1]]
plot(IBDsegment,filename=paste(fileName,pRange,"_mat",sep=""))
##attention: filename without type ".txt"
## End(Not run)
#Work in a temporary directory.
old_dir <- getwd()
setwd(tempdir())
# Load data and write to vcf file.
data(chr1ASW1000G)
write(chr1ASW1000G,file="chr1ASW1000G.vcf")
#Create the analysis pipeline for haplotype data (1000Genomes)
makePipelineFile(fileName="chr1ASW1000G",shiftSize=500,intervalSize=1000,haplotypes=TRUE)
source("pipeline.R")
# Following files are produced:
list.files(pattern="chr1")
# Next we load interval 5 and there the first and second IBD segment
posAll <- 5
start <- (posAll-1)*shiftSize
end <- start + intervalSize
pRange <- paste("_",format(start,scientific=FALSE),"_",format(end,scientific=FALSE),sep="")
load(file=paste(fileName,pRange,"_resAnno",".Rda",sep=""))
IBDsegmentList <- resHapFabia$mergedIBDsegmentList
summary(IBDsegmentList)
IBDsegment1 <- IBDsegmentList[[1]]
summary(IBDsegment1)
IBDsegment2 <- IBDsegmentList[[2]]
summary(IBDsegment2)
#Plot the first IBD segment in interval 5
plot(IBDsegment1,filename=paste(fileName,pRange,"_mat",sep=""))
#Plot the second IBD segment in interval 5
plot(IBDsegment2,filename=paste(fileName,pRange,"_mat",sep=""))
setwd(old_dir)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.