lfa: Logistic Factor Analysis for Categorical Data

LFA is a method for a PCA analogue on Binomial data via estimation of latent structure in the natural parameter.

AuthorWei Hao, Minsun Song, John D. Storey
Date of publicationNone
MaintainerWei Hao <whao@princeton.edu>, John D. Storey <jstorey@princeton.edu>
LicenseGPL-3
Version1.4.0
https://github.com/StoreyLab/lfa

View on Bioconductor

Files in this package

lfa/DESCRIPTION
lfa/NAMESPACE
lfa/R
lfa/R/af.R lfa/R/data.R lfa/R/datahandling.R lfa/R/lfa.R lfa/R/svd.R
lfa/build
lfa/build/vignette.rds
lfa/data
lfa/data/hgdp_subset.rda
lfa/inst
lfa/inst/doc
lfa/inst/doc/lfa.R
lfa/inst/doc/lfa.Rnw
lfa/inst/doc/lfa.pdf
lfa/man
lfa/man/af.Rd lfa/man/af_snp.Rd lfa/man/center.Rd lfa/man/centerscale.Rd lfa/man/hgdp_subset.Rd lfa/man/lfa.Rd lfa/man/model.gof.Rd lfa/man/pca_af.Rd lfa/man/read.bed.Rd lfa/man/read.tped.recode.Rd lfa/man/trunc.svd.Rd
lfa/src
lfa/src/Makevars
lfa/src/fastmat.c
lfa/src/lfa-init.c
lfa/src/lfa.c
lfa/src/lfa.h
lfa/src/lreg.c
lfa/vignettes
lfa/vignettes/lfa.Rnw
lfa/vignettes/lfa.bib

Questions? Problems? Suggestions? or email at ian@mutexlabs.com.

All documentation is copyright its authors; we didn't write any of that.