01Introduction: Introduction to the LIMMA Package

Description Details Author(s) References See Also


LIMMA is a library for the analysis of gene expression microarray data, especially the use of linear models for analysing designed experiments and the assessment of differential expression. LIMMA provides the ability to analyse comparisons between many RNA targets simultaneously in arbitrary complicated designed experiments. Empirical Bayesian methods are used to provide stable results even when the number of arrays is small. The linear model and differential expression functions apply to all gene expression technologies, including microarrays, RNA-seq and quantitative PCR.


There are three types of documentation available:

  1. The LIMMA User's Guide can be reached through the "User Guides and Package Vignettes" links at the top of the LIMMA contents page. The function limmaUsersGuide gives the file location of the User's Guide.

  2. An overview of limma functions grouped by purpose is contained in the numbered chapters at the foot of the LIMMA package index page, of which this page is the first.

  3. The LIMMA contents page gives an alphabetical index of detailed help topics.

The function changeLog displays the record of changes to the package.


Gordon Smyth, with contributions from many colleagues


Phipson, B, Lee, S, Majewski, IJ, Alexander, WS, and Smyth, GK (2016). Robust hyperparameter estimation protects against hypervariable genes and improves power to detect differential expression. Annals of Applied Statistics 10, 946-963. http://projecteuclid.org/euclid.aoas/1469199900

Ritchie, ME, Phipson, B, Wu, D, Hu, Y, Law, CW, Shi, W, and Smyth, GK (2015). limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Research 43, e47. http://nar.oxfordjournals.org/content/43/7/e47

Law, CW, Chen, Y, Shi, W, and Smyth, GK (2014). Voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biology 15, R29. http://genomebiology.com/2014/15/2/R29

Smyth, G. K. (2004). Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Statistical Applications in Genetics and Molecular Biology, Volume 3, Article 3. http://www.statsci.org/smyth/pubs/ebayes.pdf

See Also

02.Classes, 03.ReadingData, 04.Background, 05.Normalization, 06.LinearModels, 07.SingleChannel, 08.Tests, 09.Diagnostics, 10.GeneSetTests, 11.RNAseq

limma documentation built on Nov. 8, 2020, 8:28 p.m.