limma: Linear Models for Microarray Data

Data analysis, linear models and differential expression for microarray data.

Package details

AuthorGordon Smyth [cre,aut], Yifang Hu [ctb], Matthew Ritchie [ctb], Jeremy Silver [ctb], James Wettenhall [ctb], Davis McCarthy [ctb], Di Wu [ctb], Wei Shi [ctb], Belinda Phipson [ctb], Aaron Lun [ctb], Natalie Thorne [ctb], Alicia Oshlack [ctb], Carolyn de Graaf [ctb], Yunshun Chen [ctb], Mette Langaas [ctb], Egil Ferkingstad [ctb], Marcus Davy [ctb], Francois Pepin [ctb], Dongseok Choi [ctb]
Bioconductor views AlternativeSplicing BatchEffect Bayesian BiomedicalInformatics CellBiology Cheminformatics Clustering DataImport DifferentialExpression DifferentialSplicing Epigenetics ExonArray FunctionalGenomics GeneExpression GeneSetEnrichment Genetics ImmunoOncology Metabolomics MicroRNAArray Microarray MultipleComparison Normalization OneChannel Preprocessing ProprietaryPlatforms Proteomics QualityControl RNASeq Regression Sequencing SystemsBiology TimeCourse Transcription Transcriptomics TwoChannel mRNAMicroarray
MaintainerGordon Smyth <[email protected]>
LicenseGPL (>=2)
Version3.38.3
URL http://bioinf.wehi.edu.au/limma
Package repositoryView on Bioconductor
Installation Install the latest version of this package by entering the following in R:
source("https://bioconductor.org/biocLite.R")
biocLite("limma")

Try the limma package in your browser

Any scripts or data that you put into this service are public.

limma documentation built on Dec. 3, 2018, 6 p.m.