Nothing
"bga.jackknife" <-
function(data, classvec, ...){
ntrain<-ncol(data) # Microarray data, samples in columns
if (!ntrain ==length(classvec)) stop("ncol in training data not equal to length classvec")
classvec<-checkfac(classvec)
nclasses=length(levels(classvec))
out<-matrix(NA, nrow=ntrain, ncol=(nclasses+2))
jackset<-function(ntrain=10,i=1) {
# Jackknife, One Leave out analysis
# to run use:: for (i in c(1:ntrain)) print(jackset(ntrain,i))
# ntrain is the ncol in the data, i is the sample to be left out
ind<-c(1:ntrain)
newtrain<-ind[-(i)]
newtest<-ind[i]
return(list(train=newtrain,test=newtest))
}
for (i in c(1:ntrain)) {
ind<-jackset(ntrain,i)
traindata<-data[,ind$train]
testdata<- as.matrix(data[,ind$test])
trainvec<- classvec[ind$train]
testvec <- classvec[ind$test]
bga.res <- bga.suppl(traindata, testdata, trainvec, testvec, suponly=TRUE)
out[i,]<-as.matrix(bga.res)
}
colnames(out)<-colnames(bga.res)
out[,"closest.centre" ]<-as.matrix(factor(out[,"closest.centre" ], labels=levels(classvec)))
out[,"predicted"]<-as.matrix(factor(out[,"predicted"], labels=levels(classvec)))
rownames(out)<-colnames(data)
# Do some v simple stats
n.correct<-length(which(out[,"predicted"]== out[,"true.class"]))
p.correct<-n.correct/ntrain*100
n.incorrect<-length(which(out[,"predicted"]!= out[,"true.class"]))
stats=c("No.correct"=n.correct, "No.incorrect"=n.incorrect, "%correct"=round(p.correct,2))
# return
return(list("results"=out, "summary"=stats))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.