Nothing
## ----init-init, eval=TRUE, echo=FALSE, message=FALSE, warning=FALSE-----------
library(metaseqR)
## ----init-metaseqr, eval=FALSE, echo=TRUE, warning=FALSE----------------------
# library(metaseqR)
# help(metaseqr) # or
# help(metaseqr.main)
## ----help-1, eval=FALSE, echo=TRUE--------------------------------------------
# help(hg18.exon.data)
# help(mm9.gene.data)
## ----data-1, eval=TRUE, echo=TRUE---------------------------------------------
data("mm9.gene.data",package="metaseqR")
## ----head-1, eval=TRUE, echo=TRUE---------------------------------------------
head(mm9.gene.counts)
## ----random-1, eval=TRUE, echo=TRUE-------------------------------------------
sample.list.mm9
## ----random-2, eval=TRUE, echo=TRUE-------------------------------------------
libsize.list.mm9
## ----example-1, eval=TRUE, echo=TRUE, tidy=FALSE, message=TRUE, warning=FALSE----
library(metaseqR)
data("mm9.gene.data",package="metaseqR")
out.dir <- tempdir()
print(out.dir)
result <- metaseqr(
counts=mm9.gene.counts,
sample.list=sample.list.mm9,
contrast=c("e14.5_vs_adult_8_weeks"),
libsize.list=libsize.list.mm9,
annotation="download",
org="mm9",
count.type="gene",
normalization="edger",
statistics="edger",
qc.plots=c(
"mds","filtered","correl","pairwise","boxplot","gcbias",
"lengthbias","meandiff","meanvar","deheatmap","volcano"
),
pcut=0.05,
fig.format=c("png","pdf"),
export.what=c("annotation","p.value","meta.p.value",
"adj.meta.p.value","fold.change"),
export.scale=c("natural","log2"),
export.values="normalized",
export.stats=c("mean","sd","cv"),
export.where=out.dir,
restrict.cores=0.1,
gene.filters=list(
length=list(
length=500
),
avg.reads=list(
average.per.bp=100,
quantile=0.25
),
expression=list(
median=TRUE,
mean=FALSE,
quantile=NA,
known=NA,
custom=NA
),
biotype=get.defaults("biotype.filter","mm9")
),
out.list=TRUE
)
## ----head-2, eval=TRUE, echo=TRUE---------------------------------------------
head(result[["data"]][["e14.5_vs_adult_8_weeks"]])
## ----example-2, eval=TRUE, echo=TRUE, tidy=FALSE, message=TRUE, warning=FALSE----
library(metaseqR)
data("mm9.gene.data",package="metaseqR")
out.dir2 <- tempdir()
print(out.dir2)
result <- metaseqr(
counts=mm9.gene.counts,
sample.list=sample.list.mm9,
contrast=c("e14.5_vs_adult_8_weeks"),
libsize.list=libsize.list.mm9,
annotation="download",
org="mm9",
count.type="gene",
when.apply.filter="prenorm",
normalization="edaseq",
statistics=c("deseq","edger"),
qc.plots=c(
"mds","filtered","correl","pairwise","boxplot","gcbias",
"lengthbias","meandiff","meanvar","deheatmap","volcano"
),
meta.p="fisher",
fig.format=c("png","pdf"),
preset="medium.normal",
export.where=out.dir2,
restrict.cores=0.1,
out.list=TRUE
)
## ----example-3, eval=FALSE, echo=TRUE, tidy=FALSE, message=FALSE, warning=FALSE----
# library(metaseqR)
# data("mm9.gene.data",package="metaseqR")
# out.dir <- tempdir()
# print(out.dir)
# result <- metaseqr(
# counts=mm9.gene.counts,
# sample.list=sample.list.mm9,
# contrast=c("e14.5_vs_adult_8_weeks"),
# libsize.list=libsize.list.mm9,
# annotation="download",
# org="mm9",
# count.type="gene",
# normalization="edaseq",
# statistics=c("deseq","edger"),
# meta.p="fisher",
# fig.format=c("png","pdf"),
# preset="medium.normal",
# out.list=TRUE,
# export.where=out.dir
# )
## ----example-4, eval=FALSE, echo=TRUE, tidy=FALSE-----------------------------
# # A full example pipeline with exon counts
# data("hg19.exon.data",package="metaseqR")
# out.dir <- tempdir()
# print(out.dir)
# metaseqr(
# counts=hg19.exon.counts,
# sample.list=sample.list.hg19,
# contrast=c("normal_vs_paracancerous","normal_vs_cancerous",
# "normal_vs_paracancerous_vs_cancerous"),
# libsize.list=libsize.list.hg19,
# id.col=4,
# annotation="download",
# org="hg19",
# count.type="exon",
# normalization="edaseq",
# statistics="deseq",
# pcut=0.05,
# qc.plots=c(
# "mds","biodetection","countsbio","saturation","rnacomp","pairwise",
# "boxplot","gcbias","lengthbias","meandiff","meanvar","correl",
# "deheatmap","volcano","biodist","filtered"
# ),
# fig.format=c("png","pdf"),
# export.what=c("annotation","p.value","adj.p.value","fold.change","stats","counts"),
# export.scale=c("natural","log2","log10","vst"),
# export.values=c("raw","normalized"),
# export.stats=c("mean","median","sd","mad","cv","rcv"),
# restrict.cores=0.8,
# gene.filters=list(
# length=list(
# length=500
# ),
# avg.reads=list(
# average.per.bp=100,
# quantile=0.25
# ),
# expression=list(
# median=TRUE,
# mean=FALSE
# ),
# biotype=get.defaults("biotype.filter","hg19")
# ),
# export.where=out.dir
# )
## ----example-5, eval=FALSE, echo=TRUE, tidy=FALSE-----------------------------
# # A full example pipeline with exon counts
# data("hg19.exon.data",package="metaseqR")
# out.dir <- tempdir()
# print(out.dir)
# metaseqr(
# counts=hg19.exon.counts,
# sample.list=sample.list.hg19,
# contrast=c("normal_vs_paracancerous","normal_vs_cancerous",
# "normal_vs_paracancerous_vs_cancerous"),
# libsize.list=libsize.list.hg19,
# id.col=4,
# annotation="download",
# org="hg19",
# count.type="exon",
# normalization="edaseq",
# statistics="deseq",
# preset="medium.normal",
# restrict.cores=0.8,
# export.where=out.dir
# )
## ----example-6, eval=TRUE, echo=TRUE, tidy=FALSE------------------------------
data("mm9.gene.data",package="metaseqR")
weights <- estimate.aufc.weights(
counts=as.matrix(mm9.gene.counts[,9:12]),
normalization="edaseq",
statistics=c("edger","limma"),
nsim=1,N=10,ndeg=c(2,2),top=4,model.org="mm9",
seed=42,multic=FALSE,libsize.gt=1e+5
)
## ----head-3, eval=TRUE, echo=TRUE---------------------------------------------
weights
## ----help-2, eval=FALSE, echo=TRUE--------------------------------------------
# help(stat.edgeR)
## ----help-3, eval=FALSE, echo=TRUE--------------------------------------------
# help(metaseqr)
## ----session-info, eval=TRUE, echo=FALSE--------------------------------------
sessionInfo()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.