Nothing
#########################################################
# Z1 with 1 signal component
#########################################################
.mosaicsZ1_1S <- function( MOSAiCS_Z0, Y, pNfit, Y_bd_all, k=3 )
{
##################################################################
### initialization of the main EM
##################################################################
a <- MOSAiCS_Z0$a
#mu_est <- get_mu_est(M, GC, MOSAiCS_Z0, trunc_GC=0.55)
mu_est <- MOSAiCS_Z0$muEst
b_est <- a / mu_est
pi0 <- MOSAiCS_Z0$pi0
tab_Y <- MOSAiCS_Z0$Y_freq
Y_u <- MOSAiCS_Z0$Y_val
# initial mu & var
mu1_init <- mean(Y_bd_all)
var1_init <- var(Y_bd_all)
# calculate initial EN and varN, based on initial mu & var
EN <- mean(mu_est)
varN <- EN*( 1 + EN/a )
if( mu1_init < EN )
{
EN <- mu1_init - 0.1
}
if( var1_init < varN )
{
varN <- var1_init - 0.15
}
# initialize b & c
if( var1_init - varN - mu1_init + EN <= 0 )
{
b_init <- (mu1_init - EN)^2 / 0.1
c_init <- (mu1_init - EN) / 0.1
} else
{
b_init <- (mu1_init - EN)^2 / (var1_init - varN - mu1_init + EN)
c_init <- (mu1_init - EN) / (var1_init - varN - mu1_init + EN)
}
##################################################################
### The main EM calculation: iterate till convergence
##################################################################
#print( "initialization for EM" )
# calculate EN and vanN
# (redefine EN after heuristic EN adjustment for initialization)
EN <- mean(mu_est)
varN <- EN*(1 + EN/a)
# parameters for Y>=k
id_geqk <- which(Y>=k)
Y_ori <- Y[id_geqk]
Y_Z1 <- Y - k # adjusted Y
Y_Z1 <- Y_Z1[id_geqk]
#M_Z1 <- M[id_geqk]
#GC_Z1 <- GC[id_geqk]
b_est_Z1 <- b_est[id_geqk]
mu_est_Z1 <- mu_est[id_geqk]
Yk <- Y_ori - k # use only Y >= k
#if(length(which(Y<0))>0 ) Y[which(Y<0)] <- -1
Ykmax <- max(Yk)
#ind_ge_k <- which(Y>=0)
# Initialization of the main EM calculation
#PYZ0 <- dnbinom( Y_ori, a, b_est_Z1/(b_est_Z1+1) )
PYZ0 <- pNfit$PYZ0
#pNfit <- .calcPN( Y_ori, k, a, mu_est_Z1 )
#PYZ1 <- .margDistZ1_1S( Y_ori, pNfit, b_init, c_init )
PYZ1 <- .margDistZ1_1S( Yk, Ykmax, pNfit, b_init, c_init )
b_iter <- b_init
c_iter <- c_init
# main EM iteration
eps <- 1e-6
#logLik <- -Inf
#logLik <- c(logLik, sum(log(pi0*PYZ0 + (1-pi0)*PYZ1)))
logLik1 <- sum( log( pi0*PYZ0 + (1-pi0)*PYZ1 ) )
logLik <- c( -Inf, logLik1 )
iter <- 2
#print( "simulation" )
while( abs(logLik[iter]-logLik[iter-1])>eps & iter < 10 )
{
# E-step
Z_latent <- (1 - pi0)*PYZ1 / ( pi0*PYZ0 + (1 - pi0)*PYZ1 )
# M-step
mu1 <- sum(Z_latent*Y_Z1) / sum(Z_latent)
var1 <- sum(Z_latent*(Y_Z1 - mu1)^2) / sum(Z_latent)
b <- (mu1 - EN)^2 / (var1 - varN - mu1 + EN)
c <- (mu1 - EN) / (var1 - varN - mu1 + EN)
# stop iteration if assumptions are not satisfied
if ( b<0 | c<0 )
{
b <- b_iter[(iter-1)]
c <- c_iter[(iter-1)]
break
}
# calculate P(Y|Z=1)
#print( "calculate P(Y|Z=1)" )
#PYZ1 <- .margDistZ1_1S( Y_ori, pNfit, b, c )
PYZ1 <- .margDistZ1_1S( Yk, Ykmax, pNfit, b, c )
# update iteration
#logLik <- c(logLik, sum(log(pi0*PYZ0 + (1-pi0)*PYZ1)))
logLik_t <- sum( log( pi0*PYZ0 + (1-pi0)*PYZ1 ) )
if ( is.na(logLik_t) | is.nan(logLik_t) ) {
b <- b_iter[(iter-1)]
c <- c_iter[(iter-1)]
logLik_t <- logLik[(iter-1)]
break
}
logLik <- c( logLik, logLik_t )
b_iter <- c(b_iter, b)
c_iter <- c(c_iter, c)
iter <- iter + 1
}
#return(list(M_u = MOSAiCS_Z0$M_u, GC_u = MOSAiCS_Z0$GC_u, a_u = MOSAiCS_Z0$a_u, b_u = MOSAiCS_Z0$b_u, mean0_u = MOSAiCS_Z0$mean0_u, var0_u = MOSAiCS_Z0$var0_u, u0_u = MOSAiCS_Z0$u0_u, u1_u = MOSAiCS_Z0$u1_u, u2_u = MOSAiCS_Z0$u2_u, n_u = MOSAiCS_Z0$n_u, ty_u = MOSAiCS_Z0$ty_u, Y_val = MOSAiCS_Z0$Y_val, Y_freq = MOSAiCS_Z0$Y_freq, pi0 = MOSAiCS_Z0$pi0, a = MOSAiCS_Z0$a, beta0_strata = MOSAiCS_Z0$beta0_strata, betaM_strata = MOSAiCS_Z0$betaM_strata, betaM2_strata = MOSAiCS_Z0$betaM2_strata, betaGC_strata = MOSAiCS_Z0$betaGC_strata, b = b, c = c, b_init = b_init, c_init = c_init, logLik = logLik, b_iter = b_iter, c_iter = c_iter))
#return( list(
# M_u = MOSAiCS_Z0$M_u, GC_u = MOSAiCS_Z0$GC_u, a_u = MOSAiCS_Z0$a_u, b_u = MOSAiCS_Z0$b_u,
# mean0_u = MOSAiCS_Z0$mean0_u, var0_u = MOSAiCS_Z0$var0_u, n_u = MOSAiCS_Z0$n_u, ty_u = MOSAiCS_Z0$ty_u,
# Y_val = MOSAiCS_Z0$Y_val, Y_freq = MOSAiCS_Z0$Y_freq,
# pi0 = MOSAiCS_Z0$pi0, a = MOSAiCS_Z0$a, b = b, c = c,
# mu_est = mu_est ) )
return( list(
pi0 = MOSAiCS_Z0$pi0, a = MOSAiCS_Z0$a, muEst = MOSAiCS_Z0$muEst,
b = b, c = c ) )
}
#.margDistZ1_1S <- function( Yori, pNfit, b, c )
.margDistZ1_1S <- function( Y, Ymax, pNfit, b, c )
{
k <- pNfit$k
pN <- pNfit$pN
mu_round <- pNfit$mu_round
mu_round_U <- pNfit$mu_round_U
# process Y
#Y <- Yori - k # use only Y >= k
#if(length(which(Y<0))>0 ) Y[which(Y<0)] <- -1
#Ymax <- max(Y)
#ind_ge_k <- which(Y>=0)
# prob of S
pS <- dnbinom( 0:Ymax, b, c/(c+1) )
#MDZ1 <- rep( 0, length(Y) )
#MDZ1[ ind_ge_k ] <- conv_1S( y=Y[ind_ge_k], mu_round=mu_round[ind_ge_k],
# mu_round_U=mu_round_U, pN=pN, pS=pS )
MDZ1 <- conv_1S( y=Y, mu_round=mu_round,
mu_round_U=mu_round_U, pN=pN, pS=pS )
return(MDZ1)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.