Nothing
# fit MOSAiCS
setMethod(
f="mosaicsFit",
signature="BinData",
definition=function( object, analysisType="automatic", bgEst="rMOM",
k=3, meanThres=NA, s=2, d=0.25, trans="power", truncProb=0.999,
parallel=FALSE, nCore=8 )
{
# Note: users can tune parameters only regarding MOSAiCS model fitting.
# Note: tuning adaptive griding parameters is not supported yet.
# check options: parallel computing (optional)
if ( parallel == TRUE ) {
message( "Use 'parallel' package for parallel computing." )
if ( length(find.package('parallel',quiet=TRUE)) == 0 ) {
stop( "Please install 'parallel' package!" )
}
}
if ( analysisType == "automatic" ) {
# if "analysisType" is not specified, "analysisType" is determined by dataset
if ( length(object@input)==0 ) {
# we don't have input: we should have both of M and GC
if ( length(object@mappability)>0 & length(object@gcContent)>0 ) {
#cat( "Info: one-sample analysis.\n" )
analysisType <- "OS"
} else {
stop( "any of control data, mappability, or GC content does not exist. Cannot proceed!\n" )
}
} else {
# we have input: TS if we have both M & GC; IO otherwise.
if ( length(object@mappability)>0 & length(object@gcContent)>0 ) {
#cat( "Info: two-sample analysis (with mappability & GC content).\n" )
analysisType <- "TS"
} else {
#cat( "Info: two-sample analysis (Input only).\n" )
analysisType <- "IO"
}
}
} else {
# if "analysisType" is specified, check its validity
# error treatment: Input-only analysis is impossible if input data does not exist
if ( analysisType=="IO" & length(object@input)==0 )
{
message( "Info: two-sample analysis (Input only)." )
stop( "control data does not exist. Cannot proceed!\n" )
}
# error treatment: If M or GC does not exist, TS analysis is not available
if ( analysisType=="OS" & ( length(object@mappability)==0 | length(object@gcContent)==0 ) )
{
message( "Info: one-sample analysis." )
stop( "mappability or GC content does not exist. Cannot proceed!\n" )
}
# error treatment: If input data does not exist, TS analysis is not available
if ( analysisType=="TS" & length(object@input)==0 )
{
message( "Info: two-sample analysis (with mappability & GC content)." )
message( "Info: control data does not exist." )
message( "Info: one-sample analysis will be implemented instead." )
analysisType <- "OS"
}
# error treatment: If M or GC does not exist, TS analysis is not available
if ( analysisType=="TS" & ( length(object@mappability)==0 | length(object@gcContent)==0 ) )
{
message( "Info: two-sample analysis (with mappability & GC content)." )
message( "Info: mappability or GC content data does not exist." )
message( "Info: two-sample analysis (Input only) will be implemented instead." )
analysisType <- "IO"
}
}
# check validity of "bgEst"
if ( bgEst == "automatic" ) {
message( "Info: background estimation method is determined based on data." )
Y_freq <- table( object@tagCount )
if ( sum(Y_freq[ as.numeric(names(Y_freq))<=2 ]) / sum(Y_freq) > 0.5 ) {
message( "Info: background estimation based on bins with low tag counts." )
bgEst <- "matchLow"
} else {
message( "Info: background estimation based on robust method of moment" )
bgEst <- "rMOM"
}
} else if ( bgEst == "matchLow" ) {
message( "Info: background estimation based on bins with low tag counts." )
} else if ( bgEst == "rMOM" ) {
message( "Info: background estimation based on robust method of moment." )
} else {
stop( "Incorrect specification for 'bgEst'! 'bgEst' should be one of 'matchLow', 'rMOM', or 'automatic'!" )
}
# default meanThres for each of "OS" & "TS"
if ( is.na(meanThres) )
{
switch( analysisType,
OS = {
meanThres <- 0
},
TS = {
meanThres <- 1
},
IO = {
meanThres <- NA # meanThres is not used for analysisType=="IO"
}
)
}
# MOSAiCS model fit
switch( analysisType,
OS = {
# one-sample analysis
message( "Info: one-sample analysis." )
fit <- .mosaicsFit_OS( object, bgEst=bgEst, k=k, meanThres=meanThres,
parallel=parallel, nCore=nCore )
},
TS = {
# two-sample analysis (with M & GC)
message( "Info: two-sample analysis (with mappability & GC content)." )
fit <- .mosaicsFit_TS( object, bgEst=bgEst,
k=k, meanThres=meanThres, s=s, d=d,
parallel=parallel, nCore=nCore )
},
IO = {
# two-sample analysis (Input only)
message( "Info: two-sample analysis (Input only)." )
fit <- .mosaicsFit_IO( object, bgEst=bgEst,
k=k, d=d, trans=trans, truncProb=truncProb,
parallel=parallel, nCore=nCore )
}
)
message( "Info: done!" )
return(fit)
}
)
# MOSAiCS one-sample analysis
.mosaicsFit_OS <- function( binData, bgEst, k=3, meanThres=0,
parallel=FALSE, nCore=8 )
{
message( "Info: use adaptive griding." )
message( "Info: fitting background model..." )
fitParam <- .adapGridMosaicsZ0_OS(
Y=binData@tagCount, M=binData@mappability, GC=binData@gcContent,
bgEst=bgEst, min_n_MGC=50, grids_MGC=c(0.01,0.02,0.04,0.10,0.20,0.50),
parallel=parallel, nCore=nCore )
fitZ0 <- .rlmFit_OS( parEst=fitParam, mean_thres=meanThres, bgEst=bgEst,
Y=binData@tagCount, M=binData@mappability, GC=binData@gcContent )
pNfit <- .calcPN( Y=binData@tagCount, k=k, a=fitZ0$a, mu_est=fitZ0$muEst )
rm( fitParam )
gc()
message( "Info: done!" )
Y_bd_all <- .calcYbdAll( fitZ0, k=k )
message( "Info: fitting one-signal-component model..." )
fitZ1_1S <- .mosaicsZ1_1S( fitZ0, Y=binData@tagCount,
pNfit=pNfit, Y_bd_all=Y_bd_all, k=k )
message( "Info: fitting two-signal-component model..." )
fitZ1_2S <- .mosaicsZ1_2S( fitZ0, Y=binData@tagCount,
pNfit=pNfit, Y_bd_all=Y_bd_all, k=k )
#message( "Info: calculating BIC of fitted models..." )
#fitBIC_1S <- .calcModelBIC( fitZ1=fitZ1_1S, Y=binData@tagCount,
# pNfit=pNfit, k=k, model="1S", type="BIC", npar=9 )
#fitBIC_2S <- .calcModelBIC( fitZ1=fitZ1_2S, Y=binData@tagCount,
# pNfit=pNfit, k=k, model="2S", type="BIC", npar=12 )
mosaicsEst <- new( "MosaicsFitEst",
pi0=fitZ0$pi0, a=fitZ0$a,
betaEst=fitZ0$betaEst, muEst=fitZ0$muEst, pNfit=pNfit,
b=fitZ1_1S$b, c=fitZ1_1S$c,
p1=fitZ1_2S$p1, b1=fitZ1_2S$b1, c1=fitZ1_2S$c1, b2=fitZ1_2S$b2, c2=fitZ1_2S$c2,
analysisType="OS" )
rm( fitZ0, fitZ1_1S, fitZ1_2S )
gc()
message( "Info: calculating BIC of fitted models..." )
loglik_1S <- .logLik( mosaicsEst=mosaicsEst, tagCount=binData@tagCount,
pNfit=pNfit, k=k, signalModel="1S" )
loglik_2S <- .logLik( mosaicsEst=mosaicsEst, tagCount=binData@tagCount,
pNfit=pNfit, k=k, signalModel="2S" )
fitBIC_1S <- .calcModelBIC(
loglik=loglik_1S, n=length(binData@tagCount), nChr=1,
method="mosaics", analysisType="OS", signalModel="1S", type="BIC" )
fitBIC_2S <- .calcModelBIC(
loglik=loglik_2S, n=length(binData@tagCount), nChr=1,
method="mosaics", analysisType="OS", signalModel="2S", type="BIC" )
mosaicsParam <- new( "MosaicsFitParam", k=k, meanThres=meanThres )
new( "MosaicsFit",
mosaicsEst=mosaicsEst, mosaicsParam=mosaicsParam,
chrID=binData@chrID, coord=binData@coord,
tagCount=binData@tagCount, input=binData@input,
mappability=binData@mappability, gcContent=binData@gcContent,
bic1S=fitBIC_1S, bic2S=fitBIC_2S )
}
# MOSAiCS two-sample analysis (with M & GC)
.mosaicsFit_TS <- function( binData, bgEst, k=3, meanThres=1, s=2, d=0.25,
parallel=FALSE, nCore=8 )
{
message( "Info: use adaptive griding." )
message( "Info: fitting background model..." )
# warning if there are insufficient # of bins with 0, 1, 2 counts in control sample
# -> input-only analysis is preferred.
X_freq <- table(binData@input)
if( sum(X_freq[ as.numeric(names(X_freq))<=2 ])/sum(X_freq) < 0.5 ) {
message( paste("Info: insufficient # of bins with counts <=", s, "in control sample.") )
message( "Info: Model fit can be unstable. Input-only analysis might be preferred." )
}
fitParam <- .adapGridMosaicsZ0_TS(
Y=binData@tagCount, M=binData@mappability, GC=binData@gcContent, X=binData@input,
bgEst=bgEst, min_n_MGC=50, grids_MGC=c(0.01,0.02,0.04,0.10,0.20,0.50), min_n_X=200,
parallel=parallel, nCore=nCore )
fitZ0 <- .rlmFit_TS( parEst=fitParam, mean_thres=meanThres, s=s, d=d, bgEst=bgEst,
Y=binData@tagCount, M=binData@mappability, GC=binData@gcContent, X=binData@input )
pNfit <- .calcPN( Y=binData@tagCount, k=k, a=fitZ0$a, mu_est=fitZ0$muEst )
rm( fitParam )
gc()
message( "Info: done!" )
Y_bd_all <- .calcYbdAll( fitZ0, k=k )
message( "Info: fitting one-signal-component model..." )
fitZ1_1S <- .mosaicsZ1_1S( fitZ0, Y=binData@tagCount,
pNfit=pNfit, Y_bd_all=Y_bd_all, k=k )
message( "Info: fitting two-signal-component model..." )
fitZ1_2S <- .mosaicsZ1_2S( fitZ0, Y=binData@tagCount,
pNfit=pNfit, Y_bd_all=Y_bd_all, k=k )
#message( "Info: calculating BIC of fitted models..." )
#fitBIC_1S <- .calcModelBIC( fitZ1=fitZ1_1S, Y=binData@tagCount,
# pNfit=pNfit, k=k, model="1S", type="BIC", npar=11 )
#fitBIC_2S <- .calcModelBIC( fitZ1=fitZ1_2S, Y=binData@tagCount,
# pNfit=pNfit, k=k, model="2S", type="BIC", npar=14 )
mosaicsEst <- new( "MosaicsFitEst",
pi0=fitZ0$pi0, a=fitZ0$a,
betaEst=fitZ0$betaEst, muEst=fitZ0$muEst, pNfit=pNfit,
b=fitZ1_1S$b, c=fitZ1_1S$c,
p1=fitZ1_2S$p1, b1=fitZ1_2S$b1, c1=fitZ1_2S$c1, b2=fitZ1_2S$b2, c2=fitZ1_2S$c2,
analysisType="TS" )
rm( fitZ0, fitZ1_1S, fitZ1_2S )
gc()
message( "Info: calculating BIC of fitted models..." )
loglik_1S <- .logLik( mosaicsEst=mosaicsEst, tagCount=binData@tagCount,
pNfit=pNfit, k=k, signalModel="1S" )
loglik_2S <- .logLik( mosaicsEst=mosaicsEst, tagCount=binData@tagCount,
pNfit=pNfit, k=k, signalModel="2S" )
fitBIC_1S <- .calcModelBIC(
loglik=loglik_1S, n=length(binData@tagCount), nChr=1,
method="mosaics", analysisType="TS", signalModel="1S", type="BIC" )
fitBIC_2S <- .calcModelBIC(
loglik=loglik_2S, n=length(binData@tagCount), nChr=1,
method="mosaics", analysisType="TS", signalModel="2S", type="BIC" )
mosaicsParam <- new( "MosaicsFitParam", k=k, meanThres=meanThres, s=s, d=d )
new( "MosaicsFit",
mosaicsEst=mosaicsEst, mosaicsParam=mosaicsParam,
chrID=binData@chrID, coord=binData@coord,
tagCount=binData@tagCount, input=binData@input,
mappability=binData@mappability, gcContent=binData@gcContent,
bic1S=fitBIC_1S, bic2S=fitBIC_2S )
}
# MOSAiCS two-sample analysis (Input only)
.mosaicsFit_IO <- function( binData, bgEst, k=3, d=0.25, trans="log",
truncProb=0.999, parallel=FALSE, nCore=8 )
{
message( "Info: use adaptive griding." )
message( "Info: fitting background model..." )
inputTrunc <- quantile( binData@input, truncProb )
#fitParam <- .adapGridMosaicsZ0_IO( Y=binData@tagCount, X=binData@input,
# min_n_X=50 )
fitParam <- .adapGridMosaicsZ0_IO( Y=binData@tagCount, X=binData@input,
bgEst=bgEst, inputTrunc=inputTrunc, min_n_X=50,
parallel=parallel, nCore=nCore )
fitZ0 <- .rlmFit_IO( parEst=fitParam, d=d, trans=trans, bgEst=bgEst,
Y=binData@tagCount, X=binData@input, inputTrunc=inputTrunc )
pNfit <- .calcPN( Y=binData@tagCount, k=k, a=fitZ0$a, mu_est=fitZ0$muEst )
rm( fitParam )
gc()
message( "Info: done!" )
Y_bd_all <- .calcYbdAll( fitZ0, k=k )
message( "Info: fitting one-signal-component model..." )
fitZ1_1S <- .mosaicsZ1_1S( fitZ0, Y=binData@tagCount,
pNfit=pNfit, Y_bd_all=Y_bd_all, k=k )
message( "Info: fitting two-signal-component model..." )
fitZ1_2S <- .mosaicsZ1_2S( fitZ0, Y=binData@tagCount,
pNfit=pNfit, Y_bd_all=Y_bd_all, k=k )
#message( "Info: calculating BIC of fitted models..." )
#fitBIC_1S <- .calcModelBIC( fitZ1=fitZ1_1S, Y=binData@tagCount,
# pNfit=pNfit, k=k, model="1S", type="BIC", npar=6 )
#fitBIC_2S <- .calcModelBIC( fitZ1=fitZ1_2S, Y=binData@tagCount,
# pNfit=pNfit, k=k, model="2S", type="BIC", npar=9 )
mosaicsEst <- new( "MosaicsFitEst",
pi0=fitZ0$pi0, a=fitZ0$a,
betaEst=fitZ0$betaEst, muEst=fitZ0$muEst, pNfit=pNfit,
b=fitZ1_1S$b, c=fitZ1_1S$c,
p1=fitZ1_2S$p1, b1=fitZ1_2S$b1, c1=fitZ1_2S$c1, b2=fitZ1_2S$b2, c2=fitZ1_2S$c2,
inputTrunc=inputTrunc, analysisType="IO" )
rm( fitZ0, fitZ1_1S, fitZ1_2S )
gc()
message( "Info: calculating BIC of fitted models..." )
loglik_1S <- .logLik( mosaicsEst=mosaicsEst, tagCount=binData@tagCount,
pNfit=pNfit, k=k, signalModel="1S" )
loglik_2S <- .logLik( mosaicsEst=mosaicsEst, tagCount=binData@tagCount,
pNfit=pNfit, k=k, signalModel="2S" )
fitBIC_1S <- .calcModelBIC(
loglik=loglik_1S, n=length(binData@tagCount), nChr=1,
method="mosaics", analysisType="IO", signalModel="1S", type="BIC" )
fitBIC_2S <- .calcModelBIC(
loglik=loglik_2S, n=length(binData@tagCount), nChr=1,
method="mosaics", analysisType="IO", signalModel="2S", type="BIC" )
mosaicsParam <- new( "MosaicsFitParam", k=k, d=d )
new( "MosaicsFit",
mosaicsEst=mosaicsEst, mosaicsParam=mosaicsParam,
chrID=binData@chrID, coord=binData@coord,
tagCount=binData@tagCount, input=binData@input,
mappability=binData@mappability, gcContent=binData@gcContent,
bic1S=fitBIC_1S, bic2S=fitBIC_2S, seqDepth=binData@seqDepth )
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.