data: Example datasets

Description Value Author(s) References Examples

Description

A SingleCellExperiment containing 10x droplet-based scRNA-seq PBCM data from 8 Lupus patients befor and after 6h-treatment with INF-beta (16 samples in total).

The original data has been filtered to

Assay logcounts corresponds to log-normalized values obtained from logNormCounts with default parameters.

The original measurement data, as well as gene and cell metadata is available through the NCBI GEO accession number GSE96583; code to reproduce this example dataset from the original data is provided in the examples section.

Value

a SingleCellExperiment.

Author(s)

Helena L Crowell

References

Kang et al. (2018). Multiplexed droplet single-cell RNA-sequencing using natural genetic variation. Nature Biotechnology, 36(1): 89-94. DOI: 10.1038/nbt.4042.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
## Not run: 
# set random seed for cell sampling
set.seed(2929)

# load data
library(ExperimentHub)
eh <- ExperimentHub()
sce <- eh[["EH2259"]]

# drop unassigned cells & multiplets
sce <- sce[, !is.na(sce$cell)]
sce <- sce[, sce$multiplets == "singlet"]

# keep 4 samples per group
sce$id <- paste0(sce$stim, sce$ind)
inds <- sample(sce$ind, 4)
ids <- paste0(levels(sce$stim), rep(inds, each = 2))
sce <- sce[, sce$id %in% ids]

# keep 5 clusters
kids <- c("B cells", "CD4 T cells", "CD8 T cells",
    "CD14+ Monocytes", "FCGR3A+ Monocytes")
sce <- sce[, sce$cell %in% kids]
sce$cell <- droplevels(sce$cell)

# basic filtering on  genes & cells
gs <- rowSums(counts(sce) > 1) > 50
cs <- colSums(counts(sce) > 0) > 200
sce <- sce[gs, cs]

# sample max. 100 cells per cluster-sample
cs_by_ks <- split(colnames(sce), list(sce$cell, sce$id))
cs <- sapply(cs_by_ks, function(u) 
    sample(u, min(length(u), 100)))
sce <- sce[, unlist(cs)]

# compute logcounts
library(scater)
sce <- computeLibraryFactors(sce)
sce <- logNormCounts(sce)

# re-format for 'muscat'
sce <- prepSCE(sce, 
    cluster_id = "cell", 
    sample_id = "id", 
    group_id = "stim", 
    drop = TRUE)

## End(Not run) 

muscat documentation built on Nov. 8, 2020, 7:47 p.m.