Description Value Author(s) References Examples
A SingleCellExperiment
containing
10x droplet-based scRNA-seq PBCM data from 8 Lupus patients befor and after
6h-treatment with INF-beta (16 samples in total).
The original data has been filtered to
remove unassigned cells & cell multiplets
retain only 4 out of 8 samples per experimental group
retain only 5 out of 8 subpopulations (clusters)
retain genes with a count > 1 in > 50 cells
retain cells with > 200 detected genes
retain at most 100 cells per cluster-sample instance
Assay logcounts
corresponds to log-normalized values
obtained from logNormCounts
with default parameters.
The original measurement data, as well as gene and cell metadata is available through the NCBI GEO accession number GSE96583; code to reproduce this example dataset from the original data is provided in the examples section.
a SingleCellExperiment
.
Helena L Crowell
Kang et al. (2018). Multiplexed droplet single-cell RNA-sequencing using natural genetic variation. Nature Biotechnology, 36(1): 89-94. DOI: 10.1038/nbt.4042.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 | ## Not run:
# set random seed for cell sampling
set.seed(2929)
# load data
library(ExperimentHub)
eh <- ExperimentHub()
sce <- eh[["EH2259"]]
# drop unassigned cells & multiplets
sce <- sce[, !is.na(sce$cell)]
sce <- sce[, sce$multiplets == "singlet"]
# keep 4 samples per group
sce$id <- paste0(sce$stim, sce$ind)
inds <- sample(sce$ind, 4)
ids <- paste0(levels(sce$stim), rep(inds, each = 2))
sce <- sce[, sce$id %in% ids]
# keep 5 clusters
kids <- c("B cells", "CD4 T cells", "CD8 T cells",
"CD14+ Monocytes", "FCGR3A+ Monocytes")
sce <- sce[, sce$cell %in% kids]
sce$cell <- droplevels(sce$cell)
# basic filtering on genes & cells
gs <- rowSums(counts(sce) > 1) > 50
cs <- colSums(counts(sce) > 0) > 200
sce <- sce[gs, cs]
# sample max. 100 cells per cluster-sample
cs_by_ks <- split(colnames(sce), list(sce$cell, sce$id))
cs <- sapply(cs_by_ks, function(u)
sample(u, min(length(u), 100)))
sce <- sce[, unlist(cs)]
# compute logcounts
library(scater)
sce <- computeLibraryFactors(sce)
sce <- logNormCounts(sce)
# re-format for 'muscat'
sce <- prepSCE(sce,
cluster_id = "cell",
sample_id = "id",
group_id = "stim",
drop = TRUE)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.