Nothing
#' LORD: Online FDR control based on recent discovery
#'
#' Implements the LORD procedure for online FDR control, where LORD stands for
#' (significance) Levels based On Recent Discovery, as presented by Javanmard
#' and Montanari (2018) and Ramdas et al. (2017).
#'
#' The function takes as its input either a vector of p-values or a dataframe
#' with three columns: an identifier (`id'), date (`date') and p-value (`pval').
#' The case where p-values arrive in batches corresponds to multiple instances
#' of the same date. If no column of dates is provided, then the p-values are
#' treated as being ordered sequentially with no batches.
#'
#' The LORD procedure provably controls FDR for independent p-values (see below
#' for dependent p-values). Given an overall significance level \eqn{\alpha}, we
#' choose a sequence of non-negative non-increasing numbers \eqn{\gamma_i} that
#' sum to 1.
#'
#' Javanmard and Montanari (2018) presented versions of LORD which differ in the
#' way the adjusted significance thresholds \eqn{\alpha_i} are calculated. The
#' significance thresholds for LORD 2 are based on all previous discovery times.
#' LORD 2 has been superseded by the algorithm given in Ramdas et al. (2017),
#' LORD++ (\code{version='++'}), which is the default version. The significance
#' thresholds for LORD 3 (\code{version=3}) are based on the time of the last
#' discovery as well as the 'wealth' accumulated at that time. Finally, Tian and
#' Ramdas (2019) presented a version of LORD (\code{version='discard'}) that can
#' improve the power of the procedure in the presence of conservative nulls by
#' adaptively `discarding' these p-values.
#'
#' LORD depends on constants \eqn{w_0} and (for versions 3 and 'dep') \eqn{b_0},
#' where \eqn{0 \le w_0 \le \alpha} represents the initial `wealth' of the
#' procedure and \eqn{b_0 > 0} represents the `payout' for rejecting a
#' hypothesis. We require \eqn{w_0+b_0 \le \alpha} for FDR control to hold.
#' Version 'discard' also depends on a constant \eqn{\tau}, where \eqn{\tau \in
#' (0,1)} represents the threshold for a hypothesis to be selected for testing:
#' p-values greater than \eqn{\tau} are implicitly `discarded' by the procedure.
#'
#' Note that FDR control also holds for the LORD procedure if only the p-values
#' corresponding to true nulls are mutually independent, and independent from
#' the non-null p-values.
#'
#' For dependent p-values, a modified LORD procedure was proposed in Javanmard
#' and Montanari (2018), which is called be setting \code{version='dep'}. Given
#' an overall significance level \eqn{\alpha}, we choose a sequence of
#' non-negative numbers \eqn{\xi_i} such that they satisfy a condition given in
#' Javanmard and Montanari (2018), example 3.8.
#'
#' Further details of the LORD procedures can be found in Javanmard and
#' Montanari (2018), Ramdas et al. (2017) and Tian and Ramdas (2019).
#'
#'
#' @param d Either a vector of p-values, or a dataframe with three columns: an
#' identifier (`id'), date (`date') and p-value (`pval'). If no column of
#' dates is provided, then the p-values are treated as being ordered
#' sequentially with no batches.
#'
#' @param alpha Overall significance level of the FDR procedure, the default is
#' 0.05.
#'
#' @param gammai Optional vector of \eqn{\gamma_i}. A default is provided as
#' proposed by Javanmard and Montanari (2018), equation 31 for all versions of
#' LORD except 'dep'. The latter is provided a default to satisfy a condition
#' given in Javanmard and Montanari (2018), example 3.8.
#'
#' @param version Takes values '++', 3, 'discard', or 'dep'. This specifies the
#' version of LORD to use, and defaults to '++'.
#'
#' @param w0 Initial `wealth' of the procedure, defaults to \eqn{\alpha/10}.
#'
#' @param b0 The 'payout' for rejecting a hypothesis in all versions of LORD
#' except for '++'. Defaults to \eqn{\alpha - w_0}.
#'
#' @param tau.discard Optional threshold for hypotheses to be selected for
#' testing. Must be between 0 and 1, defaults to 0.5. This is required if
#' \code{version='discard'}.
#'
#' @param random Logical. If \code{TRUE} (the default), then the order of the
#' p-values in each batch (i.e. those that have exactly the same date) is
#' randomised.
#'
#' @param date.format Optional string giving the format that is used for dates.
#'
#'
#' @return \item{d.out}{ A dataframe with the original data \code{d} (which
#' will be reordered if there are batches and \code{random = TRUE}), the
#' LORD-adjusted significance thresholds \eqn{\alpha_i} and the indicator
#' function of discoveries \code{R}. Hypothesis \eqn{i} is rejected if the
#' \eqn{i}-th p-value is less than or equal to \eqn{\alpha_i}, in which case
#' \code{R[i] = 1} (otherwise \code{R[i] = 0}).}
#'
#'
#' @references Javanmard, A. and Montanari, A. (2018) Online Rules for Control
#' of False Discovery Rate and False Discovery Exceedance. \emph{Annals of
#' Statistics}, 46(2):526-554.
#'
#' Ramdas, A., Yang, F., Wainwright M.J. and Jordan, M.I. (2017). Online control
#' of the false discovery rate with decaying memory. \emph{Advances in Neural
#' Information Processing Systems 30}, 5650-5659.
#'
#' Tian, J. and Ramdas, A. (2019). ADDIS: an adaptive discarding algorithm for
#' online FDR control with conservative nulls. \emph{arXiv preprint},
#' \url{https://arxiv.org/abs/1905.11465}.
#'
#'
#' @seealso
#'
#' \code{\link{LORDstar}} presents versions of LORD for \emph{asynchronous}
#' testing, i.e. where each hypothesis test can itself be a sequential process
#' and the tests can overlap in time.
#'
#'
#' @examples
#' sample.df <- data.frame(
#' id = c('A15432', 'B90969', 'C18705', 'B49731', 'E99902',
#' 'C38292', 'A30619', 'D46627', 'E29198', 'A41418',
#' 'D51456', 'C88669', 'E03673', 'A63155', 'B66033'),
#' date = as.Date(c(rep('2014-12-01',3),
#' rep('2015-09-21',5),
#' rep('2016-05-19',2),
#' '2016-11-12',
#' rep('2017-03-27',4))),
#' pval = c(2.90e-08, 0.06743, 0.01514, 0.08174, 0.00171,
#' 3.60e-05, 0.79149, 0.27201, 0.28295, 7.59e-08,
#' 0.69274, 0.30443, 0.00136, 0.72342, 0.54757))
#'
#' LORD(sample.df, random=FALSE)
#'
#' set.seed(1); LORD(sample.df, version='dep')
#'
#' set.seed(1); LORD(sample.df, version='discard')
#'
#' set.seed(1); LORD(sample.df, alpha=0.1, w0=0.05)
#'
#'
#' @export
LORD <- function(d, alpha = 0.05, gammai, version = "++", w0, b0, tau.discard = 0.5,
random = TRUE, date.format = "%Y-%m-%d") {
if (is.data.frame(d)) {
d <- checkdf(d, random, date.format)
pval <- d$pval
} else if (is.vector(d)) {
pval <- d
} else {
stop("d must either be a dataframe or a vector of p-values.")
}
checkPval(pval)
N <- length(pval)
if (alpha <= 0 || alpha > 1) {
stop("alpha must be between 0 and 1.")
}
if (version %in% c(1, 2)) {
stop("LORD 1 and LORD 2 have been superceded by LORD++, please use version '++' instead.")
} else if (!(version %in% c("++", 3, "3", "discard", "dep"))) {
stop("version must be '++', 3, 'discard' or 'dep'.")
}
if (missing(w0)) {
w0 = alpha/10
} else if (w0 < 0) {
stop("w0 must be non-negative.")
}
if (version %in% c(3, "3", "dep")) {
if (missing(b0)) {
b0 = alpha - w0
} else if (b0 <= 0) {
stop("b0 must be positive.")
} else if (w0 + b0 > alpha & !(isTRUE(all.equal(w0 + b0, alpha)))) {
stop("The sum of w0 and b0 must not be greater than alpha.")
}
} else {
if (w0 > alpha) {
stop("w0 must not be greater than alpha.")
}
}
if (version != "dep") {
if (missing(gammai)) {
gammai <- 0.07720838 * log(pmax(seq_len(N + 1), 2))/(seq_len(N + 1) *
exp(sqrt(log(seq_len(N + 1)))))
} else if (any(gammai < 0)) {
stop("All elements of gammai must be non-negative.")
} else if (sum(gammai) > 1) {
stop("The sum of the elements of gammai must be <= 1.")
}
} else {
if (missing(gammai)) {
gammai <- 0.139307 * alpha/(b0 * seq_len(N) * (log(pmax(seq_len(N), 2)))^3)
} else if (any(gammai < 0)) {
stop("All elements of gammai must be non-negative.")
} else if (sum(gammai) > alpha/b0) {
stop("The sum of the elements of gammai must be <= alpha/b0.")
}
}
if (version == "++") {
version <- 1
} else if (version == "discard") {
version <- 2
} else if (version == "3" || version == 3) {
version <- 3
} else if (version == "dep") {
version <- 4
}
alphai <- rep(0, N)
switch(version, {
## '++'
R <- rep(0, N)
alphai[1] <- gammai[1] * w0
R[1] <- (pval[1] <= alphai[1])
if (N == 1) {
d.out <- data.frame(d, alphai, R)
return(d.out)
}
for (i in (seq_len(N - 1) + 1)) {
tau <- which(R[seq_len(i - 1)] == 1)
if (sum(R) <= 1) {
alphai[i] <- w0 * gammai[i] + (alpha - w0) * sum(gammai[i - tau])
R[i] <- pval[i] <= alphai[i]
} else {
alphai[i] <- w0 * gammai[i] + (alpha - w0) * gammai[i - tau[1]] +
alpha * sum(gammai[i - tau[-1]])
R[i] = pval[i] <= alphai[i]
}
}
}, {
## 'discard'
R <- rep(0, N)
alphai[1] <- gammai[1] * w0
R[1] <- (pval[1] <= alphai[1])
if (N == 1) {
d.out <- data.frame(d, alphai, R)
return(d.out)
}
selected <- (pval <= tau.discard)
S <- cumsum(selected)
for (i in (seq_len(N - 1) + 1)) {
kappai <- which(R[seq_len(i - 1)] == 1)
K <- length(kappai)
if (K > 1) {
kappai.star <- sapply(kappai, function(x) {
sum(selected[seq_len(x)])
})
alpha.tilde <- w0 * gammai[S[i - 1] + 1] + (tau.discard * alpha -
w0) * gammai[S[i - 1] - kappai.star[1] + 1] + tau.discard * alpha *
sum(gammai[S[i - 1] - kappai.star[-1] + 1])
alphai[i] <- min(tau.discard, alpha.tilde)
R[i] <- (pval[i] <= alphai[i])
} else if (K == 1) {
kappai.star <- sum(selected[seq_len(kappai)])
alpha.tilde <- w0 * gammai[S[i - 1] + 1] + (tau.discard * alpha -
w0) * gammai[S[i - 1] - kappai.star + 1]
alphai[i] <- min(tau.discard, alpha.tilde)
R[i] <- (pval[i] <= alphai[i])
} else {
alpha.tilde <- w0 * gammai[S[i - 1] + 1]
alphai[i] <- min(tau.discard, alpha.tilde)
R[i] <- (pval[i] <= alphai[i])
}
}
}, {
## 3
R <- W <- rep(0, N + 1)
R[1] <- 1
W[1] <- w0
alphai[1] <- phi <- gammai[1] * w0
R[2] <- (pval[1] <= alphai[1])
W[2] <- w0 - phi + R[2] * b0
if (N == 1) {
R <- R[2]
d.out <- data.frame(d, alphai, R)
return(d.out)
}
for (i in (seq_len(N - 1) + 1)) {
tau <- max(which(R[seq_len(i)] == 1))
alphai[i] <- phi <- gammai[i - tau + 1] * W[tau]
R[i + 1] <- (pval[i] <= alphai[i])
W[i + 1] <- W[i] - phi + R[i + 1] * b0
}
R <- R[(seq_len(N) + 1)]
}, {
## 'dep'
R <- W <- rep(0, N + 1)
R[1] <- 1
W[1] <- w0
alphai[1] <- phi <- gammai[1] * w0
R[2] <- pval[1] <= alphai[1]
W[2] <- w0 - phi + R[2] * b0
if (N == 1) {
R <- R[2]
d.out <- data.frame(d, alphai, R)
return(d.out)
}
for (i in (seq_len(N - 1) + 1)) {
tau <- max(which(R[seq_len(i)] == 1))
alphai[i] <- phi <- gammai[i] * W[tau]
R[i + 1] <- pval[i] <= alphai[i]
W[i + 1] <- W[i] - phi + R[i + 1] * b0
}
R <- R[(seq_len(N) + 1)]
})
d.out <- data.frame(d, alphai, R)
return(d.out)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.