R/plotAnnotationDiagnosticMultiplot.R

Defines functions annotDiagMultiplot_generateMulti annotDiagMultiplot_linkAxes annotDiagMultiplot_initPlot annotDiagMultiplot_singleCpd annotationDiagnosticMultiplot

Documented in annotationDiagnosticMultiplot

#' @title Generate a multiplot of all diagnostic plots
#'
#' @description Generate a multiplot of all diagnostic plots (as generated by
#' \code{annotationDiagnosticPlots()}) for each compound
#' 
#' @param annotationDiagnosticPlotList (list) List of (one per compound) of list
#' of diagnostic plots as generated by \code{annotationDiagnosticPlots()}
#' 
#' @return A list of multiplots (one per compound)
annotationDiagnosticMultiplot <- function(annotationDiagnosticPlotList) {
    # Init
    nbCpd <- length(annotationDiagnosticPlotList)
    outList <- vector("list", nbCpd)
    
    # Iterate over compounds
    for (cpd in seq_len(nbCpd)) {

        res <- annotDiagMultiplot_singleCpd(annotationDiagnosticPlotList, cpd)

        if (is.null(res)) { # pass to next compound in case of failure
            outList[[cpd]] <- NULL
            next
        } else {
            outList[[cpd]] <- res
        }
    }

    return(outList)
}


# -----------------------------------------------------------------------------
# annotationDiagnosticMultiplot helper functions

# prepare data for a single compound
annotDiagMultiplot_singleCpd <- function(annotationDiagnosticPlotList, cpd) {
    # Check input
    if (!all(c("EICFit", "rtPeakwidthVert", "rtPeakwidthHorzRunOrder",
                "mzPeakwidthHorzRunOrder", "areaRunOrder", "rtHistogram",
                "mzHistogram", "areaHistogram", "title") %in%
        names(annotationDiagnosticPlotList[[cpd]]))) {
        # cannot generate multiplot, pass to next compound
        message("Required plots missing for compound #", cpd)
        return(NULL) } # pass to next compound

    # Init plot
    resInit <- annotDiagMultiplot_initPlot(annotationDiagnosticPlotList, cpd)
    tmp_EIC <- resInit$EIC
    tmp_rtPeakwidthVert <- resInit$rtPeakwidthVert
    tmp_rtPeakwidthHorz <- resInit$rtPeakwidthHorz
    tmp_mzPeakwidthHorz <- resInit$mzPeakwidthHorz
    tmp_peakAreaHorz <- resInit$peakAreaHorz
    tmp_rtHisto <- resInit$rtHisto
    tmp_mzHisto <- resInit$mzHisto
    tmp_areaHisto <- resInit$areaHisto

    # link axis (same lim)
    resLink <- annotDiagMultiplot_linkAxes(tmp_EIC, tmp_rtPeakwidthVert,
        tmp_rtPeakwidthHorz, tmp_rtHisto, tmp_mzPeakwidthHorz, tmp_mzHisto,
        tmp_peakAreaHorz, tmp_areaHisto)
    tmp_EIC <- resLink$EIC
    tmp_rtPeakwidthVert <- resLink$rtPeakwidthVert
    tmp_rtPeakwidthHorz <- resLink$rtPeakwidthHorz
    tmp_mzPeakwidthHorz <- resLink$mzPeakwidthHorz
    tmp_peakAreaHorz <- resLink$peakAreaHorz
    tmp_rtHisto <- resLink$rtHisto
    tmp_mzHisto <- resLink$mzHisto
    tmp_areaHisto <- resLink$areaHisto

    # generate multiplot
    result <- annotDiagMultiplot_generateMulti(annotationDiagnosticPlotList,cpd,
        tmp_EIC, tmp_rtPeakwidthVert, tmp_rtPeakwidthHorz, tmp_rtHisto,
        tmp_mzPeakwidthHorz, tmp_mzHisto, tmp_peakAreaHorz, tmp_areaHisto)

    return(result)
}
# Initialise the subplots
annotDiagMultiplot_initPlot <- function(annotationDiagnosticPlotList, cpd) {

    tmp_EIC <- annotationDiagnosticPlotList[[cpd]]$EICFit +
                ggplot2::theme(axis.title.x = ggplot2::element_blank(),
                                axis.text.x = ggplot2::element_blank())
    tmp_rtPeakwidthVert <- annotationDiagnosticPlotList[[cpd]]$rtPeakwidthVert
    tmp_rtPeakwidthHorz <-
        annotationDiagnosticPlotList[[cpd]]$rtPeakwidthHorzRunOrder +
        ggplot2::theme(axis.title.x = ggplot2::element_blank(),
                        axis.text.x = ggplot2::element_blank())
    tmp_mzPeakwidthHorz <-
        annotationDiagnosticPlotList[[cpd]]$mzPeakwidthHorzRunOrder +
        ggplot2::theme(axis.title.x = ggplot2::element_blank(),
                        axis.text.x = ggplot2::element_blank())
    tmp_peakAreaHorz <- annotationDiagnosticPlotList[[cpd]]$areaRunOrder
    tmp_rtHisto <- annotationDiagnosticPlotList[[cpd]]$rtHistogram +
        ggplot2::coord_flip() +
        ggplot2::theme(axis.title.x = ggplot2::element_blank(),
                        axis.text.x = ggplot2::element_blank(),
                        axis.title.y = ggplot2::element_blank(),
                        axis.text.y = ggplot2::element_blank())
    tmp_mzHisto <- annotationDiagnosticPlotList[[cpd]]$mzHistogram +
        ggplot2::coord_flip() +
        ggplot2::theme(axis.title.x = ggplot2::element_blank(),
                        axis.text.x = ggplot2::element_blank(),
                        axis.title.y = ggplot2::element_blank(),
                        axis.text.y = ggplot2::element_blank())
    tmp_areaHisto <- annotationDiagnosticPlotList[[cpd]]$areaHistogram +
        ggplot2::coord_flip() +
        ggplot2::theme(axis.title.x = ggplot2::element_blank(),
                        axis.text.x = ggplot2::element_blank(),
                        axis.title.y = ggplot2::element_blank(),
                        axis.text.y = ggplot2::element_blank())

    return(list(EIC=tmp_EIC, rtPeakwidthVert=tmp_rtPeakwidthVert,
                rtPeakwidthHorz=tmp_rtPeakwidthHorz,
                mzPeakwidthHorz=tmp_mzPeakwidthHorz,
                peakAreaHorz=tmp_peakAreaHorz,
                rtHisto=tmp_rtHisto, mzHisto=tmp_mzHisto,
                areaHisto=tmp_areaHisto))
}
# Link subplots axes
annotDiagMultiplot_linkAxes <- function(tmp_EIC, tmp_rtPeakwidthVert,
        tmp_rtPeakwidthHorz, tmp_rtHisto, tmp_mzPeakwidthHorz, tmp_mzHisto,
        tmp_peakAreaHorz, tmp_areaHisto) {

    # link axis (same lim)
    # EIC + rt peakwidth (is rotated, use y in histogram)
    minXEIC <- min(ggplot2::layer_scales(tmp_EIC)$x$range$range[1],
                ggplot2::layer_scales(tmp_rtPeakwidthVert)$y$range$range[1])
    maxXEIC <- max(ggplot2::layer_scales(tmp_EIC)$x$range$range[2],
                ggplot2::layer_scales(tmp_rtPeakwidthVert)$y$range$range[2])
    tmp_EIC <- tmp_EIC + ggplot2::xlim(minXEIC, maxXEIC)
    tmp_rtPeakwidthVert <- tmp_rtPeakwidthVert + ggplot2::ylim(minXEIC, maxXEIC)

    # rt peakwidth runOrder + histo (is rotated, use x in histo)
    minYRT <- min(ggplot2::layer_scales(tmp_rtPeakwidthHorz)$y$range$range[1],
                    ggplot2::layer_scales(tmp_rtHisto)$x$range$range[1])
    maxYRT <- max(ggplot2::layer_scales(tmp_rtPeakwidthHorz)$y$range$range[2],
                    ggplot2::layer_scales(tmp_rtHisto)$x$range$range[2])
    tmp_rtPeakwidthHorz <- tmp_rtPeakwidthHorz + ggplot2::ylim(minYRT, maxYRT)
    tmp_rtHisto <- tmp_rtHisto + ggplot2::xlim(minYRT, maxYRT)

    # mz peakwidth runOrder + histo (is rotated, use x in histo)
    minYMZ <- min(ggplot2::layer_scales(tmp_mzPeakwidthHorz)$y$range$range[1],
                    ggplot2::layer_scales(tmp_mzHisto)$x$range$range[1])
    maxYMZ <- max(ggplot2::layer_scales(tmp_mzPeakwidthHorz)$y$range$range[2],
                    ggplot2::layer_scales(tmp_mzHisto)$x$range$range[2])
    tmp_mzPeakwidthHorz <- tmp_mzPeakwidthHorz + ggplot2::ylim(minYMZ, maxYMZ)
    tmp_mzHisto <- tmp_mzHisto + ggplot2::xlim(minYMZ, maxYMZ)

    # Area runOrder + histo (is rotated, use x in histo)
    minYArea <- min(ggplot2::layer_scales(tmp_peakAreaHorz)$y$range$range[1],
                    ggplot2::layer_scales(tmp_areaHisto)$x$range$range[1])
    maxYArea <- max(ggplot2::layer_scales(tmp_peakAreaHorz)$y$range$range[2],
                    ggplot2::layer_scales(tmp_areaHisto)$x$range$range[2])
    tmp_peakAreaHorz <- tmp_peakAreaHorz + ggplot2::ylim(minYArea, maxYArea)
    tmp_areaHisto <- tmp_areaHisto + ggplot2::xlim(minYArea, maxYArea)

    return(list(EIC=tmp_EIC, rtPeakwidthVert=tmp_rtPeakwidthVert,
                rtPeakwidthHorz=tmp_rtPeakwidthHorz,
                mzPeakwidthHorz=tmp_mzPeakwidthHorz,
                peakAreaHorz=tmp_peakAreaHorz,
                rtHisto=tmp_rtHisto, mzHisto=tmp_mzHisto,
                areaHisto=tmp_areaHisto))
}
# Generate multiplot
annotDiagMultiplot_generateMulti <- function(annotationDiagnosticPlotList, cpd,
    tmp_EIC, tmp_rtPeakwidthVert, tmp_rtPeakwidthHorz, tmp_rtHisto,
    tmp_mzPeakwidthHorz, tmp_mzHisto, tmp_peakAreaHorz, tmp_areaHisto) {
    ## Convert to gtables + match plotted width
    p_EIC <- ggplot2::ggplot_gtable(ggplot2::ggplot_build(tmp_EIC))
    p_rtPeakwidthVert <- ggplot2::ggplot_gtable(
                            ggplot2::ggplot_build(tmp_rtPeakwidthVert))
    p_rtPeakwidthHorz <- ggplot2::ggplot_gtable(
                            ggplot2::ggplot_build(tmp_rtPeakwidthHorz))
    p_mzPeakwidthHorz <- ggplot2::ggplot_gtable(
                            ggplot2::ggplot_build(tmp_mzPeakwidthHorz))
    p_peakAreaHorz <- ggplot2::ggplot_gtable(
                            ggplot2::ggplot_build(tmp_peakAreaHorz))
    p_rtHisto <- ggplot2::ggplot_gtable(ggplot2::ggplot_build(tmp_rtHisto))
    p_mzHisto <- ggplot2::ggplot_gtable(ggplot2::ggplot_build(tmp_mzHisto))
    p_areaHisto <- ggplot2::ggplot_gtable(ggplot2::ggplot_build(tmp_areaHisto))
    # find the widths of each of the plots, calculate the maximum and then apply
    # it to each of them individually. This effectively applies a uniform layout
    # to each of the plots ## EIC + rt peakwidth
    maxWidthEIC <- grid::unit.pmax(p_EIC$widths[2:5],
                                    p_rtPeakwidthVert$widths[2:5])
    p_EIC$widths[2:5] <- maxWidthEIC
    p_rtPeakwidthVert$widths[2:5] <- maxWidthEIC
    # rt peakwidth + mz peakwidth + peak area (x axis)
    maxWidthRtMzArea <- grid::unit.pmax(p_rtPeakwidthHorz$widths[2:5],
                                        p_mzPeakwidthHorz$widths[2:5],
                                        p_peakAreaHorz$widths[2:5])
    p_rtPeakwidthHorz$widths[2:5] <- maxWidthRtMzArea
    p_mzPeakwidthHorz$widths[2:5] <- maxWidthRtMzArea
    p_peakAreaHorz$widths[2:5] <- maxWidthRtMzArea
    # rt + mz + area peakwidth and histo (y axis)
    maxHeight <- grid::unit.pmin(p_rtPeakwidthHorz$heights[2:3],
                                p_mzPeakwidthHorz$heights[2:3],
                                p_peakAreaHorz$heights[2:3],
                                p_rtHisto$widths[2:5], p_mzHisto$widths[2:3],
                                p_areaHisto$widths[2:3])
    p_rtPeakwidthHorz$heights[2:3] <- maxHeight
    p_mzPeakwidthHorz$heights[2:3] <- maxHeight
    p_peakAreaHorz$heights[2:3] <- maxHeight
    p_rtHisto$widths[2:3] <- maxHeight
    p_mzHisto$widths[2:3] <- maxHeight
    p_areaHisto$widths[2:3] <- maxHeight
    ## Generate
    return(gridExtra::grid.arrange(p_EIC, p_rtPeakwidthVert,
        p_rtPeakwidthHorz, p_rtHisto, p_mzPeakwidthHorz, p_mzHisto,
        p_peakAreaHorz, p_areaHisto, widths = c(6, 1),
        heights = c(100, 45, 30, 30, 30, 14),
        layout_matrix = rbind(c(1, 1),c(2, 2),c(3, 4),c(5, 6),c(7, 8),c(7, 9)),
        top = annotationDiagnosticPlotList[[cpd]]$title) )
}

Try the peakPantheR package in your browser

Any scripts or data that you put into this service are public.

peakPantheR documentation built on Nov. 8, 2020, 6:38 p.m.