Nothing
## ----biocstyle, echo = FALSE, results = "asis"--------------------------------
BiocStyle::markdown()
## ---- echo = FALSE------------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----init, message = FALSE, echo = FALSE, results = "hide"--------------------
## Silently loading all packages
library(BiocStyle)
library(peakPantheR)
library(faahKO)
library(pander)
## ---- eval = FALSE------------------------------------------------------------
# if (!requireNamespace("BiocManager", quietly = TRUE))
# install.packages("BiocManager")
#
# BiocManager::install("peakPantheR")
## ---- eval = FALSE------------------------------------------------------------
# # Install devtools
# if(!require("devtools")) install.packages("devtools")
# devtools::install_github("phenomecentre/peakPantheR")
## ---- eval = FALSE------------------------------------------------------------
# library(peakPantheR)
#
# peakPantheR_start_GUI(browser = TRUE)
# # To exit press ESC in the command line
## ---- fig.align="center", out.width = "700px", echo = FALSE-------------------
knitr::include_graphics("../man/figures/example-UI.png")
## ---- eval = FALSE------------------------------------------------------------
# if (!requireNamespace("BiocManager", quietly = TRUE))
# install.packages("BiocManager")
#
# BiocManager::install("faahKO")
## -----------------------------------------------------------------------------
library(faahKO)
## file paths
input_spectraPaths <- c(system.file('cdf/KO/ko15.CDF', package = "faahKO"),
system.file('cdf/KO/ko16.CDF', package = "faahKO"),
system.file('cdf/KO/ko18.CDF', package = "faahKO"))
input_spectraPaths
## ---- eval=FALSE--------------------------------------------------------------
# # targetFeatTable
# input_targetFeatTable <- data.frame(matrix(vector(), 2, 8, dimnames=list(c(),
# c("cpdID", "cpdName", "rtMin", "rt", "rtMax", "mzMin",
# "mz", "mzMax"))), stringsAsFactors=FALSE)
# input_targetFeatTable[1,] <- c(1, "Cpd 1", 3310., 3344.888, 3390., 522.194778,
# 522.2, 522.205222)
# input_targetFeatTable[2,] <- c(2, "Cpd 2", 3280., 3385.577, 3440., 496.195038,
# 496.2, 496.204962)
# input_targetFeatTable[,c(1,3:8)] <- sapply(input_targetFeatTable[,c(1,3:8)],
# as.numeric)
## ---- results = "asis", echo = FALSE------------------------------------------
# use pandoc for improved readability
input_targetFeatTable <- data.frame(matrix(vector(), 2, 8, dimnames=list(c(),
c("cpdID", "cpdName", "rtMin", "rt", "rtMax", "mzMin",
"mz", "mzMax"))), stringsAsFactors=FALSE)
input_targetFeatTable[1,] <- c(1, "Cpd 1", 3310., 3344.888, 3390., 522.194778,
522.2, 522.205222)
input_targetFeatTable[2,] <- c(2, "Cpd 2", 3280., 3385.577, 3440., 496.195038,
496.2, 496.204962)
input_targetFeatTable[,c(1,3:8)] <- sapply(input_targetFeatTable[,c(1,3:8)],
as.numeric)
rownames(input_targetFeatTable) <- NULL
pander::pandoc.table(input_targetFeatTable, digits = 9)
## ---- eval=FALSE--------------------------------------------------------------
# library(faahKO)
#
# # Define the file paths (3 samples)
# input_spectraPaths <- c(system.file('cdf/KO/ko15.CDF', package = "faahKO"),
# system.file('cdf/KO/ko16.CDF', package = "faahKO"),
# system.file('cdf/KO/ko18.CDF', package = "faahKO"))
#
# # Define the targeted features (2 features)
# input_targetFeatTable <- data.frame(matrix(vector(), 2, 8, dimnames=list(c(),
# c("cpdID", "cpdName", "rtMin", "rt", "rtMax", "mzMin",
# "mz", "mzMax"))), stringsAsFactors=FALSE)
# input_targetFeatTable[1,] <- c("ID-1", "Cpd 1", 3310., 3344.888, 3390.,
# 522.194778, 522.2, 522.205222)
# input_targetFeatTable[2,] <- c("ID-1", "Cpd 2", 3280., 3385.577, 3440.,
# 496.195038, 496.2, 496.204962)
# input_targetFeatTable[,3:8] <- sapply(input_targetFeatTable[,3:8], as.numeric)
#
# # Define some random compound and spectra metadata
# # cpdMetadata
# input_cpdMetadata <- data.frame(matrix(data=c('a','b',1,2), nrow=2, ncol=2,
# dimnames=list(c(), c('testcol1','testcol2')),
# byrow=FALSE), stringsAsFactors=FALSE)
# # spectraMetadata
# input_spectraMetadata <- data.frame(matrix(data=c('c','d','e',3,4,5), nrow=3,
# ncol=2,
# dimnames=list(c(),c('testcol1','testcol2')),
# byrow=FALSE), stringsAsFactors=FALSE)
#
# # Initialise a simple peakPantheRAnnotation object
# # [3 files, 2 features, no uROI, no FIR]
# initAnnotation <- peakPantheRAnnotation(spectraPaths=input_spectraPaths,
# targetFeatTable=input_targetFeatTable,
# cpdMetadata=input_cpdMetadata,
# spectraMetadata=input_spectraMetadata)
#
# # Rename and save the annotation to disk
# annotationObject <- initAnnotation
# save(annotationObject,
# file = './example_annotation_ppR_UI.RData',
# compress=TRUE)
#
## ---- eval=FALSE--------------------------------------------------------------
# # Define targeted features without uROI and FIR (2 features)
# input_targetFeatTable <- data.frame(matrix(vector(), 2, 8, dimnames=list(c(),
# c("cpdID", "cpdName", "rtMin", "rt", "rtMax", "mzMin",
# "mz", "mzMax"))), stringsAsFactors=FALSE)
# input_targetFeatTable[1,] <- c("ID-1", "Cpd 1", 3310., 3344.888, 3390.,
# 522.194778, 522.2, 522.205222)
# input_targetFeatTable[2,] <- c("ID-1", "Cpd 2", 3280., 3385.577, 3440.,
# 496.195038, 496.2, 496.204962)
# input_targetFeatTable[,3:8] <- sapply(input_targetFeatTable[,3:8], as.numeric)
#
# # save to disk
# write.csv(input_targetFeatTable,
# file = './1-fitParams_example_UI.csv',
# row.names = FALSE)
## ---- results = "asis", echo = FALSE------------------------------------------
# use pandoc for improved readability
input_targetFeatTable <- data.frame(matrix(vector(), 2, 8, dimnames=list(c(),
c("cpdID", "cpdName", "rtMin", "rt", "rtMax", "mzMin",
"mz", "mzMax"))), stringsAsFactors=FALSE)
input_targetFeatTable[1,] <- c("ID-1", "Cpd 1", 3310., 3344.888, 3390.,
522.194778, 522.2, 522.205222)
input_targetFeatTable[2,] <- c("ID-1", "Cpd 2", 3280., 3385.577, 3440.,
496.195038, 496.2, 496.204962)
input_targetFeatTable[,3:8] <- sapply(input_targetFeatTable[,3:8], as.numeric)
rownames(input_targetFeatTable) <- NULL
pander::pandoc.table(input_targetFeatTable, digits = 9)
## ---- eval=FALSE--------------------------------------------------------------
# # Define the spectra paths and metada
# input_spectraMeta <- data.frame(matrix(vector(), 3, 3,
# dimnames=list(c(),c("filepath","testcol1","testcol2"))),
# stringsAsFactors=FALSE)
# input_spectraMeta[1,] <- c(system.file('cdf/KO/ko15.CDF', package = "faahKO"),
# "c", 3)
# input_spectraMeta[2,] <- c(system.file('cdf/KO/ko16.CDF', package = "faahKO"),
# "d", 4)
# input_spectraMeta[3,] <- c(system.file('cdf/KO/ko18.CDF', package = "faahKO"),
# "e", 5)
#
# # save to disk
# write.csv(input_spectraMeta,
# file = './2-spectraMetaWPath_example_UI.csv',
# row.names = FALSE)
## ---- results = "asis", echo = FALSE------------------------------------------
# use pandoc for improved readability
input_spectraMeta <- data.frame(matrix(vector(), 3, 3,
dimnames=list(c(),c("filepath","testcol1","testcol2"))),
stringsAsFactors=FALSE)
input_spectraMeta[1,] <- c(system.file('cdf/KO/ko15.CDF', package = "faahKO"),
"c", 3)
input_spectraMeta[2,] <- c(system.file('cdf/KO/ko16.CDF', package = "faahKO"),
"d", 4)
input_spectraMeta[3,] <- c(system.file('cdf/KO/ko18.CDF', package = "faahKO"),
"e", 5)
rownames(input_spectraMeta) <- NULL
pander::pandoc.table(input_spectraMeta, digits = 0)
## ---- eval=FALSE--------------------------------------------------------------
# # Define the feature metada
# input_featMeta <- data.frame(matrix(vector(), 2, 2,
# dimnames=list(c(),c("testcol1","testcol2"))),
# stringsAsFactors=FALSE)
# input_featMeta[1,] <- c("a", 1)
# input_featMeta[2,] <- c("b", 2)
#
# # save to disk
# write.csv(input_featMeta,
# file = './3-featMeta_example_UI.csv',
# row.names = FALSE)
## ---- results = "asis", echo = FALSE------------------------------------------
# use pandoc for improved readability
input_featMeta <- data.frame(matrix(vector(), 2, 2,
dimnames=list(c(),c("testcol1","testcol2"))),
stringsAsFactors=FALSE)
input_featMeta[1,] <- c("a", 1)
input_featMeta[2,] <- c("b", 2)
rownames(input_featMeta) <- NULL
pander::pandoc.table(input_featMeta, digits = 0)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.