Nothing
## ----biocstyle, echo = FALSE, results = "asis"--------------------------------
BiocStyle::markdown()
## ---- echo = FALSE------------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----init, message = FALSE, echo = FALSE, results = "hide"--------------------
## Silently loading all packages
library(BiocStyle)
library(peakPantheR)
library(faahKO)
library(pander)
library(doParallel)
library(foreach)
## ---- out.width = "700px", echo = FALSE---------------------------------------
knitr::include_graphics("../man/figures/parallelAnnotation.png")
## ---- out.width = "700px", echo = FALSE---------------------------------------
knitr::include_graphics("../man/figures/parallelAnnotation_procedure.png")
## -----------------------------------------------------------------------------
library(faahKO)
## file paths
input_spectraPaths <- c(system.file('cdf/KO/ko15.CDF', package = "faahKO"),
system.file('cdf/KO/ko16.CDF', package = "faahKO"),
system.file('cdf/KO/ko18.CDF', package = "faahKO"))
input_spectraPaths
## ---- eval = FALSE------------------------------------------------------------
# # targetFeatTable
# input_targetFeatTable <- data.frame(matrix(vector(), 2, 8, dimnames=list(c(),
# c("cpdID", "cpdName", "rtMin", "rt", "rtMax", "mzMin",
# "mz", "mzMax"))), stringsAsFactors=FALSE)
# input_targetFeatTable[1,] <- c("ID-1", "Cpd 1", 3310., 3344.888, 3390.,
# 522.194778, 522.2, 522.205222)
# input_targetFeatTable[2,] <- c("ID-2", "Cpd 2", 3280., 3385.577, 3440.,
# 496.195038, 496.2, 496.204962)
# input_targetFeatTable[,c(3:8)] <- sapply(input_targetFeatTable[,c(3:8)],
# as.numeric)
## ---- results = "asis", echo = FALSE------------------------------------------
# use pandoc for improved readability
input_targetFeatTable <- data.frame(matrix(vector(), 2, 8, dimnames=list(c(),
c("cpdID", "cpdName", "rtMin", "rt", "rtMax", "mzMin",
"mz", "mzMax"))), stringsAsFactors=FALSE)
input_targetFeatTable[1,] <- c("ID-1", "Cpd 1", 3310., 3344.888, 3390.,
522.194778, 522.2, 522.205222)
input_targetFeatTable[2,] <- c("ID-2", "Cpd 2", 3280., 3385.577, 3440.,
496.195038, 496.2, 496.204962)
input_targetFeatTable[,c(3:8)] <- sapply(input_targetFeatTable[,c(3:8)],
as.numeric)
rownames(input_targetFeatTable) <- NULL
pander::pandoc.table(input_targetFeatTable, digits = 9)
## ---- eval=FALSE--------------------------------------------------------------
# # spectra Metadata
# input_spectraMetadata <- data.frame(matrix(c("sample type 1", "sample type 2",
# "sample type 1"), 3, 1,
# dimnames=list(c(),c("sampleType"))),
# stringsAsFactors=FALSE)
## ---- results = "asis", echo = FALSE------------------------------------------
# use pandoc for improved readability
input_spectraMetadata <- data.frame(matrix(c("sample type 1", "sample type 2",
"sample type 1"), 3, 1,
dimnames=list(c(),c("sampleType"))),
stringsAsFactors=FALSE)
pander::pandoc.table(input_spectraMetadata)
## -----------------------------------------------------------------------------
library(peakPantheR)
init_annotation <- peakPantheRAnnotation(spectraPaths = input_spectraPaths,
targetFeatTable = input_targetFeatTable,
spectraMetadata = input_spectraMetadata)
## -----------------------------------------------------------------------------
init_annotation
## -----------------------------------------------------------------------------
# annotate files serially
annotation_result <- peakPantheR_parallelAnnotation(init_annotation, ncores=0,
curveModel='skewedGaussian',
verbose=TRUE)
# successful fit
nbSamples(annotation_result$annotation)
data_annotation <- annotation_result$annotation
data_annotation
# list failed fit
annotation_result$failures
## -----------------------------------------------------------------------------
updated_annotation <- annotationParamsDiagnostic(data_annotation, verbose=TRUE)
# uROI now exist
updated_annotation
## ---- eval=FALSE--------------------------------------------------------------
# # create a colourScale based on the sampleType
# uniq_sType <- sort(unique(spectraMetadata(updated_annotation)$sampleType),
# na.last=TRUE)
# col_sType <- unname( setNames(c('blue', 'red'),
# c(uniq_sType))[spectraMetadata(updated_annotation)$sampleType] )
#
# # create a temporary location to save the diagnotic (otherwise provide the path
# # to the selected location)
# output_folder <- tempdir()
#
# # output fit diagnostic to disk
# outputAnnotationDiagnostic(updated_annotation, saveFolder=output_folder,
# savePlots=TRUE, sampleColour=col_sType,
# verbose=TRUE, ncores=2)
## ---- results = "asis", echo = FALSE------------------------------------------
# use pandoc for improved readability, display the diagnostic results
tmp_csv <- data.frame(matrix(nrow=2,ncol=21,dimnames=list(c(), c('cpdID',
'cpdName', 'X', 'ROI_rt', 'ROI_mz','ROI_rtMin', 'ROI_rtMax',
'ROI_mzMin', 'ROI_mzMax', 'X', 'uROI_rtMin', 'uROI_rtMax', 'uROI_mzMin',
'uROI_mzMax', 'uROI_rt', 'uROI_mz', 'X', 'FIR_rtMin', 'FIR_rtMax',
'FIR_mzMin', 'FIR_mzMax'))), stringsAsFactors=FALSE)
tmp_csv[1,] <- c('ID-1','Cpd 1', '|', 3344.888, 522.2, 3310., 3390., 522.194778,
522.205222,'|', 3305.75893, 3411.436284, 522.194778, 522.205222,
3344.888, 522.2, '|', 3326.10635, 3407.272648, 522.194778,
522.205222)
tmp_csv[2,] <- c('ID-2','Cpd 2', '|', 3385.577, 496.2, 3280., 3440., 496.195038,
496.204962,'|',3337.376665, 3462.449033, 496.195038, 496.204962,
3385.577, 496.2, '|', 3365.023857, 3453.404957, 496.195038,
496.204962)
tmp_csv[,-c(1,2,3,10,17)] <- sapply(tmp_csv[,-c(1,2,3,10,17)], as.numeric)
colnames(tmp_csv) <- c('cpdID', 'cpdName', 'X', 'ROI_rt', 'ROI_mz','ROI_rtMin',
'ROI_rtMax', 'ROI_mzMin', 'ROI_mzMax', 'X', 'uROI_rtMin',
'uROI_rtMax', 'uROI_mzMin', 'uROI_mzMax', 'uROI_rt',
'uROI_mz', 'X', 'FIR_rtMin', 'FIR_rtMax', 'FIR_mzMin',
'FIR_mzMax')
pander::pandoc.table(tmp_csv, digits=9)
## ---- out.width = "700px", echo = FALSE---------------------------------------
knitr::include_graphics(
"../man/figures/parallel_annotation_diagnostic_cpd1.png")
## ---- results="asis", echo=FALSE----------------------------------------------
# Example with constant correction.
rtCorrectionOutput <- retentionTimeCorrection(updated_annotation,
rtCorrectionReferences=c('ID-1'),
method='constant',
robust=FALSE,
rtWindowWidth=15,
diagnostic=TRUE)
updated_annotation <- rtCorrectionOutput$annotation
# The ggplot2 plot object
rtCorrectionOutput$plot
# Example with second degree polynomial, without using RANSAC
# # to obtain a robust fit
rtCorrectionOutput <- retentionTimeCorrection(updated_annotation,
rtCorrectionReferences=NULL,
method='polynomial',
params=list(polynomialOrder=2),
robust=FALSE, rtWindowWidth=15,
diagnostic=TRUE)
## ---- eval=FALSE--------------------------------------------------------------
# update_csv_path <- '/path_to_new_csv/'
#
# # load csv
# new_annotation <- peakPantheR_loadAnnotationParamsCSV(update_csv_path)
# #> uROIExist set to TRUE
# #> New peakPantheRAnnotation object initialised for 2 compounds
#
# new_annotation
# #> An object of class peakPantheRAnnotation
# #> 2 compounds in 0 samples.
# #> updated ROI exist (uROI)
# #> does not use updated ROI (uROI)
# #> does not use fallback integration regions (FIR)
# #> is not annotated
#
# new_annotation <- resetFIR(new_annotation)
# #> FIR will be reset with uROI values
## -----------------------------------------------------------------------------
## new files
new_spectraPaths <- c(system.file('cdf/KO/ko15.CDF', package = "faahKO"),
system.file('cdf/WT/wt15.CDF', package = "faahKO"),
system.file('cdf/KO/ko16.CDF', package = "faahKO"),
system.file('cdf/WT/wt16.CDF', package = "faahKO"),
system.file('cdf/KO/ko18.CDF', package = "faahKO"),
system.file('cdf/WT/wt18.CDF', package = "faahKO"))
new_spectraPaths
## -----------------------------------------------------------------------------
## new spectra metadata
new_spectraMetadata <- data.frame(matrix(c("KO", "WT", "KO", "WT", "KO", "WT"),
6, 1, dimnames=list(c(), c("Group"))),
stringsAsFactors=FALSE)
## ---- results = "asis", echo = FALSE------------------------------------------
# use pandoc for improved readability
new_spectraMetadata <- data.frame(matrix(c("KO", "WT", "KO", "WT", "KO", "WT"),
6, 1, dimnames=list(c(), c("Group"))),
stringsAsFactors=FALSE)
pander::pandoc.table(new_spectraMetadata)
## ---- echo=FALSE--------------------------------------------------------------
new_annotation <- resetAnnotation(updated_annotation,
spectraPaths=new_spectraPaths,
spectraMetadata=new_spectraMetadata,
useUROI=TRUE, useFIR=TRUE, verbose=FALSE)
## ---- eval=FALSE--------------------------------------------------------------
# ## add new samples to the annotation loaded from csv, useUROI, useFIR
#
# new_annotation <- resetAnnotation(new_annotation, spectraPaths=new_spectraPaths,
# spectraMetadata=new_spectraMetadata,
# useUROI=TRUE, useFIR=TRUE)
# #> peakPantheRAnnotation object being reset:
# #> Previous "ROI", "cpdID" and "cpdName" value kept
# #> Previous "uROI" value kept
# #> Previous "FIR" value kept
# #> Previous "cpdMetadata" value kept
# #> New "spectraPaths" value set
# #> New "spectraMetadata" value set
# #> Previous "uROIExist" value kept
# #> New "useUROI" value set
# #> New "useFIR" value set
## -----------------------------------------------------------------------------
new_annotation
## -----------------------------------------------------------------------------
# annotate files serially
new_annotation_result <- peakPantheR_parallelAnnotation(new_annotation,
ncores=0, verbose=FALSE)
# successful fit
nbSamples(new_annotation_result$annotation)
final_annotation <- new_annotation_result$annotation
final_annotation
# list failed fit
new_annotation_result$failures
## ---- eval=FALSE--------------------------------------------------------------
# # create a colourScale based on the sampleType
# uniq_group <- sort(unique(spectraMetadata(final_annotation)$Group),na.last=TRUE)
# col_group <- unname( setNames(c('blue', 'red'),
# c(uniq_sType))[spectraMetadata(final_annotation)$Group] )
#
# # create a temporary location to save the diagnotic (otherwise provide the path
# # to the selected location)
# final_output_folder <- tempdir()
#
# # output fit diagnostic to disk
# outputAnnotationDiagnostic(final_annotation, saveFolder=final_output_folder,
# savePlots=TRUE, sampleColour=col_group, verbose=TRUE)
## ---- eval=FALSE--------------------------------------------------------------
# # peakTables for the first sample
# peakTables(final_annotation)[[1]]
## ---- results = "asis", echo = FALSE------------------------------------------
# use pandoc for improved readability
pander::pandoc.table(peakTables(final_annotation)[[1]])
## ---- eval=FALSE--------------------------------------------------------------
# # Extract the found peak area for all compounds and all samples
# annotationTable(final_annotation, column='peakArea')
## ---- results = "asis", echo = FALSE------------------------------------------
# use pandoc for improved readability
pander::pandoc.table(annotationTable(final_annotation, column='peakArea'))
## ---- eval=FALSE--------------------------------------------------------------
# # create a temporary location to save the diagnotic (otherwise provide the path
# # to the selected location)
# final_output_folder <- tempdir()
#
# # save
# outputAnnotationResult(final_annotation, saveFolder=final_output_folder,
# annotationName='ProjectName', verbose=TRUE)
# #> Compound metadata saved at /final_output_folder/ProjectName_cpdMetadata.csv
# #> Spectra metadata saved at
# #> /final_output_folder/ProjectName_spectraMetadata.csv
# #> Peak measurement "found" saved at /final_output_folder/ProjectName_found.csv
# #> Peak measurement "rtMin" saved at /final_output_folder/ProjectName_rtMin.csv
# #> Peak measurement "rt" saved at /final_output_folder/ProjectName_rt.csv
# #> Peak measurement "rtMax" saved at /final_output_folder/ProjectName_rtMax.csv
# #> Peak measurement "mzMin" saved at /final_output_folder/ProjectName_mzMin.csv
# #> Peak measurement "mz" saved at /final_output_folder/ProjectName_mz.csv
# #> Peak measurement "mzMax" saved at /final_output_folder/ProjectName_mzMax.csv
# #> Peak measurement "peakArea" saved at
# #> /final_output_folder/ProjectName_peakArea.csv
# #> Peak measurement "maxIntMeasured" saved at
# #> /final_output_folder/ProjectName_maxIntMeasured.csv
# #> Peak measurement "maxIntPredicted" saved at
# #> /final_output_folder/ProjectName_maxIntPredicted.csv
# #> Peak measurement "is_filled" saved at
# #> /final_output_folder/ProjectName_is_filled.csv
# #> Peak measurement "ppm_error" saved at
# #> /final_output_folder/ProjectName_ppm_error.csv
# #> Peak measurement "rt_dev_sec" saved at
# #> /final_output_folder/ProjectName_rt_dev_sec.csv
# #> Peak measurement "tailingFactor" saved at
# #> /final_output_folder/ProjectName_tailingFactor.csv
# #> Peak measurement "asymmetryFactor" saved at
# #> /final_output_folder/ProjectName_asymmetryFactor.csv
# #> Summary saved at /final_output_folder/ProjectName_summary.csv
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.